OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..955
Index entries for linear recurrences with constant coefficients, signature (10,10,10,10,10,10,10,10,-55).
FORMULA
G.f.: (t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^9 - 10*t^8 - 10*t^7 - 10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1).
MAPLE
seq(coeff(series((1+t)*(1-t^9)/(1-11*t+65*t^9-55*t^10), t, n+1), t, n), n = 0..30); # G. C. Greubel, Sep 25 2019
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^9)/(1-11*t+65*t^9-55*t^10), {t, 0, 30}], t] (* or *) coxG[{9, 55, -10}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 25 2019 *)
PROG
(PARI) my(t='t+O('t^30)); Vec((1+t)*(1-t^9)/(1-11*t+65*t^9-55*t^10)) \\ G. C. Greubel, Sep 25 2019
(Magma) R<t>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^9)/(1-11*t+65*t^9-55*t^10) )); // G. C. Greubel, Sep 25 2019
(Sage)
def A165266_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^9)/(1-11*t+65*t^9-55*t^10)).list()
A165266_list(30) # G. C. Greubel, Sep 25 2019
(GAP) a:=[12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306506];; for n in [10..30] do a[n]:=10*Sum([1..8], j-> a[n-j]) -55*a[n-9]; od; Concatenation([1], a); # G. C. Greubel, Sep 25 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved