login
A164352
Number of reduced words of length n in Coxeter group on 3 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.
1
1, 3, 6, 12, 24, 48, 96, 189, 372, 735, 1452, 2868, 5664, 11184, 22086, 43617, 86136, 170103, 335922, 663384, 1310064, 2587140, 5109132, 10089609, 19925148, 39348555, 77706264, 153455784, 303047352, 598463580, 1181857074, 2333953461
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003945, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^6 + t^5 + t^4 + t^3 + t^2 + t + 1)/(t^6 - 2*t^5 + t^4 - 2*t^3 + t^2 - 2*t + 1).
a(n) = 2*a(n-1)-a(n-2)+2*a(n-3)-a(n-4)+2*a(n-5)-a(n-6). - Wesley Ivan Hurt, May 11 2021
MAPLE
seq(coeff(series((1-t^7)/((1-t)*(1-2*t+t^2-2*t^3+t^4-2*t^5+t^6)), t, n+1), t, n), n = 0 .. 35); # G. C. Greubel, Aug 24 2019
MATHEMATICA
CoefficientList[Series[(1-t^7)/((1-t)*(1-2*t+t^2-2*t^3+t^4-2*t^5+t^6)), {t, 0, 35}], t] (* G. C. Greubel, Sep 15 2017 *)
LinearRecurrence[{2, -1, 2, -1, 2, -1}, {1, 3, 6, 12, 24, 48, 96}, 40] (* Harvey P. Dale, May 21 2021 *)
PROG
(PARI) (t='t+O('t^35)); Vec((1-t^7)/((1-t)*(1-2*t+t^2-2*t^3+t^4-2*t^5 +t^6))) \\ G. C. Greubel, Sep 15 2017
(Magma) R<t>:=PowerSeriesRing(Integers(), 35); Coefficients(R!( (1-t^7)/( (1-t)*(1-2*t+t^2-2*t^3+t^4-2*t^5+t^6)) )); // G. C. Greubel, Aug 24 2019
(Sage)
def A164352_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P((1-t^7)/((1-t)*(1-2*t+t^2-2*t^3+t^4-2*t^5+t^6))).list()
A164352_list(35) # G. C. Greubel, Aug 24 2019
(GAP) a:=[3, 6, 12, 24, 48, 96];; for n in [7..35] do a[n]:=2*a[n-1] -a[n-2]+2*a[n-3]-a[n-4]+2*a[n-5]-a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 24 2019
CROSSREFS
Sequence in context: A163876 A033893 A006851 * A115829 A115805 A356040
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved