login
A164313
LCM of all differences of odd primes up to prime(n).
0
2, 4, 24, 120, 840, 1680, 5040, 720720, 720720, 24504480, 465585120, 465585120, 465585120, 53542288800, 160626866400, 4658179125600, 288807105787200, 288807105787200, 288807105787200, 10685862914126400, 10685862914126400
OFFSET
3,1
COMMENTS
That is, we compute the LCM of all differences prime(i)-prime(j) for 1 < j < i <= n.
LINKS
P. Erdős, Some problems on number theory, Analytic and elementary number theory, (Marseille, 1983), Publ. Math. Orsay, 86-1, pp. 53-67, Univ. Paris XI, Orsay, 1986.
P. Erdős, Some problems on number theory, Proceedings of the seventeenth Southeastern international conference on combinatorics, graph theory, and computing (Boca Raton, Fla., 1986 Congr. Numer. 54 (1986), 225-244.
MATHEMATICA
Table[p=Prime[Range[2, n]]; d=Rest[Union[Abs[Flatten[Outer[Plus, p, -p]]]]]; LCM@@d, {n, 3, 30}]
CROSSREFS
Sequence in context: A170931 A317999 A371892 * A087981 A002875 A330504
KEYWORD
nonn
AUTHOR
T. D. Noe, Aug 12 2009
STATUS
approved