# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a164313 Showing 1-1 of 1 %I A164313 #6 Apr 28 2019 11:03:07 %S A164313 2,4,24,120,840,1680,5040,720720,720720,24504480,465585120,465585120, %T A164313 465585120,53542288800,160626866400,4658179125600,288807105787200, %U A164313 288807105787200,288807105787200,10685862914126400,10685862914126400 %N A164313 LCM of all differences of odd primes up to prime(n). %C A164313 That is, we compute the LCM of all differences prime(i)-prime(j) for 1 < j < i <= n. %H A164313 P. Erdős, Some problems on number theory, Analytic and elementary number theory, (Marseille, 1983), Publ. Math. Orsay, 86-1, pp. 53-67, Univ. Paris XI, Orsay, 1986. %H A164313 P. Erdős, Some problems on number theory, Proceedings of the seventeenth Southeastern international conference on combinatorics, graph theory, and computing (Boca Raton, Fla., 1986 Congr. Numer. 54 (1986), 225-244. %t A164313 Table[p=Prime[Range[2,n]]; d=Rest[Union[Abs[Flatten[Outer[Plus,p,-p]]]]]; LCM@@d, {n,3,30}] %K A164313 nonn %O A164313 3,1 %A A164313 _T. D. Noe_, Aug 12 2009 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE