login
A163282
Triangle read by rows in which row n lists n+1 terms, starting with n^2 and ending with n^3, such that difference between successive terms is equal to n^2 - n.
6
0, 1, 1, 4, 6, 8, 9, 15, 21, 27, 16, 28, 40, 52, 64, 25, 45, 65, 85, 105, 125, 36, 66, 96, 126, 156, 186, 216, 49, 91, 133, 175, 217, 259, 301, 343, 64, 120, 176, 232, 288, 344, 400, 456, 512, 81, 153, 225, 297, 369, 441, 513, 585, 657, 729, 100, 190, 280, 370, 460, 550
OFFSET
0,4
COMMENTS
The first term of row n is A000290(n) and the last term of row n is A000578(n).
FORMULA
T(n, k) = n^2 + k*(n^2 - n), for 0 <= k <= n, n>= 0. - G. C. Greubel, Dec 13 2016
EXAMPLE
Triangle begins:
0;
1, 1;
4, 6, 8;
9, 15, 21, 27;
16, 28, 40, 52, 64;
25, 45, 65, 85, 105, 125;
36, 66, 96, 126, 156, 186, 216;
49, 91, 133, 175, 217, 259, 301, 343;
64, 120, 176, 232, 288, 344, 400, 456, 512;
81, 153, 225, 297, 369, 441, 513, 585, 657, 729;
100, 190, 280, 370, 460, 550, 640, 730, 820, 910, 1000;
MATHEMATICA
T[n_, k_] := n^2 + k*(n^2 - n); Table[T[n, k], {n, 0, 10}, {k, 0, n}] //Flatten (* G. C. Greubel, Dec 13 2016 *)
Join[{0, 1}, Table[Range[n^2, n^3, n^2-n], {n, 10}]]//Flatten (* Harvey P. Dale, Sep 09 2019 *)
PROG
(PARI) A163282(n, k)=n^2+k*(n^2-n) \\ Michael B. Porter, Feb 25 2010
(Magma) /* As triangle: */ [[n^2+k*(n^2-n): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Dec 13 2016
KEYWORD
nonn,tabl,easy
AUTHOR
Omar E. Pol, Jul 24 2009
STATUS
approved