login
A162641
Number of even exponents in canonical prime factorization of n.
27
0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0
OFFSET
1,36
FORMULA
a(n) = A001221(n) - A162642(n).
a(A002035(n)) = 0.
a(A072587(n)) > 0.
Additive with a(p^e) = A059841(e). - Antti Karttunen, Jul 23 2017
From Antti Karttunen, Nov 28 2017: (Start)
a(n) = A162642(A003557(n)).
a(n) <= A056170(n).
(End)
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} 1/(p*(p+1)) = 0.3302299262... (A179119). - Amiram Eldar, Dec 25 2021
MATHEMATICA
Table[Count[FactorInteger[n][[All, -1]], _?EvenQ], {n, 105}] (* Michael De Vlieger, Jul 23 2017 *)
PROG
(PARI) A162641(n) = omega(n) - omega(core(n)); \\ Antti Karttunen, Jul 23 2017
(Scheme) (define (A162641 n) (if (= 1 n) 0 (+ (A059841 (A067029 n)) (A162641 (A028234 n))))) ;; Antti Karttunen, Jul 23 2017
CROSSREFS
Cf. A268335 (positions of zeros), A295316.
Sequence in context: A369427 A304819 A304820 * A333487 A348380 A185374
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 08 2009
STATUS
approved