login
A162610
Triangle read by rows in which row n lists n terms, starting with 2n-1, with gaps = n-1 between successive terms.
20
1, 3, 4, 5, 7, 9, 7, 10, 13, 16, 9, 13, 17, 21, 25, 11, 16, 21, 26, 31, 36, 13, 19, 25, 31, 37, 43, 49, 15, 22, 29, 36, 43, 50, 57, 64, 17, 25, 33, 41, 49, 57, 65, 73, 81, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121
OFFSET
1,2
COMMENTS
Note that the last term of the n-th row is the n-th square A000290(n).
Row sums are n*(n^2+2*n-1)/2, apparently in A127736. - R. J. Mathar, Jul 20 2009
LINKS
FORMULA
T(n,k) = n+k*n-k, 1<=k<=n. - R. J. Mathar, Oct 20 2009
T(n,k) = (k+1)*(n-1)+1. - Reinhard Zumkeller, Jan 19 2013
EXAMPLE
Triangle begins:
1
3, 4
5, 7, 9
7, 10, 13, 16
9, 13, 17, 21, 25
11, 16, 21, 26, 31, 36
MATHEMATICA
Flatten[Table[NestList[#+n-1&, 2n-1, n-1], {n, 15}]] (* Harvey P. Dale, Oct 20 2011 *)
PROG
(Python) # From R. J. Mathar, Oct 20 2009
def A162610(n, k):
return 2*n-1+(k-1)*(n-1)
print([A162610(n, k) for n in range(1, 20) for k in range(1, n+1)])
(Haskell)
a162610 n k = k * n - k + n
a162610_row n = map (a162610 n) [1..n]
a162610_tabl = map a162610_row [1..]
-- Reinhard Zumkeller, Jan 19 2013
CROSSREFS
Cf. A209297; A005408 (left edge), A000290 (right edge), A127736 (row sums), A056220 (central terms), A026741 (number of odd terms per row), A142150 (number of even terms per row), A221491 (number of primes per row).
Sequence in context: A174269 A112882 A180152 * A155935 A081606 A079945
KEYWORD
easy,tabl,nonn
AUTHOR
Omar E. Pol, Jul 09 2009
EXTENSIONS
More terms from R. J. Mathar, Oct 20 2009
STATUS
approved