login
A162361
Central prime factor of A014612(n).
6
2, 2, 3, 2, 3, 2, 3, 3, 2, 3, 5, 2, 3, 3, 2, 5, 5, 2, 3, 2, 7, 3, 3, 5, 5, 3, 2, 3, 2, 5, 5, 3, 7, 2, 3, 7, 2, 5, 5, 3, 2, 3, 5, 7, 3, 2, 5, 5, 3, 2, 3, 5, 7, 2, 7, 11, 2, 7, 3, 5, 3, 3, 7, 2, 7, 5, 3, 3, 2, 5, 11, 5, 2, 5, 2, 3, 7, 5, 2, 3, 13, 7, 5, 3, 2, 7, 11, 3, 3, 5, 11, 7, 3, 2, 7, 3, 2, 7, 5, 2, 11, 3, 5
OFFSET
1,1
LINKS
FORMULA
a(n) = m/(A020639(m)*A006530(m)) where m = A014612(n). - Michel Marcus, Feb 25 2019
EXAMPLE
a(1)=2 since A014612(1) = 8 = 2*2*2.
a(2)=2 since A014612(2) = 12 = 2*2*3.
a(3)=3 since A014612(3) = 18 = 2*3*3.
a(4)=2 since A014612(4) = 20 = 2*2*5.
a(5)=3 since A014612(5) = 27 = 3*3*3.
a(6)=2 since A014612(6) = 28 = 2*2*7.
a(7)=3 since A014612(7) = 30 = 2*3*5.
MAPLE
A014612 := proc(n) option remember ; if n = 1 then 8 ; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 3 then RETURN(a) ; fi; od: fi; end:
A162361 := proc(n) tpr := A014612(n) ; pf := sort(convert(numtheory[factorset](tpr), list)) ; tpr/op(1, pf)/op(-1, pf) ; end:
seq(A162361(n), n=1..120) ; # R. J. Mathar, Jul 06 2009
MATHEMATICA
f[n_] := With[{fi = FactorInteger[n][[All, 1]]}, n/(fi[[1]] fi[[-1]])];
f /@ Select[Range[500], PrimeOmega[#] == 3&] (* Jean-François Alcover, Aug 05 2022 *)
PROG
(PARI) isok(n) = bigomega(n)==3;
lista(nn) = {for (n=1, nn, if (isok(n), my(f=factor(n)[, 1]); print1(n/(vecmin(f)*vecmax(f)), ", ")); ); } \\ Michel Marcus, Feb 25 2019
CROSSREFS
Cf. A014612, A020639 (Lpf), A006530 (Gpf).
Sequence in context: A343556 A319396 A049237 * A171135 A073855 A306312
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited (but not checked) by N. J. A. Sloane, Jul 05 2009
Corrected and extended by R. J. Mathar and Ray Chandler, Jul 06 2009
STATUS
approved