OFFSET
0,2
COMMENTS
FORMULA
TABLE ENTRIES
(1)... T(n,k) = (2 - (-1)^(n-k))*binomial(n,k).
GENERATING FUNCTION
(2)... exp(x*t)*(2*exp(t)-exp(-t)) = 1 + (3+x)*t + (1+6*x+x^2)*t^2/2!
+ ....
The e.g.f. can also be written as
(3)... exp(x*t)/G(-t), where G(t) = exp(t)/(2-exp(2*t)) is the e.g.f.
for A080253.
MISCELLANEOUS
The row polynomials form an Appell sequence of polynomials.
Row sums = A151821.
EXAMPLE
Triangle begins
=================================================
n\k|..0.....1.....2.....3.....4.....5.....6.....7
=================================================
0..|..1
1..|..3.....1
2..|..1.....6.....1
3..|..3.....3.....9.....1
4..|..1....12.....6....12.....1
5..|..3.....5....30....10....15.....1
6..|..1....18....15....60....15....18.....1
7..|..3.....7....63....35...105....21....21.....1
...
MAPLE
CROSSREFS
KEYWORD
AUTHOR
Peter Bala, Jul 01 2009
EXTENSIONS
Row sums corrected by Peter Bala, Apr 01 2010
STATUS
approved