login
A162315
Triangular array 2*P - P^-1, where P is Pascal's triangle A007318.
2
1, 3, 1, 1, 6, 1, 3, 3, 9, 1, 1, 12, 6, 12, 1, 3, 5, 30, 10, 15, 1, 1, 18, 15, 60, 15, 18, 1, 3, 7, 63, 35, 105, 21, 21, 1, 1, 24, 28, 168, 70, 168, 28, 24, 1, 3, 9, 108, 84, 378, 126, 252, 36, 27, 1, 1, 30, 45, 360, 210, 756, 210, 360, 45, 30, 1
OFFSET
0,2
COMMENTS
Row reversed version of A124846. For the signless version of the inverse array and its connection with sums of powers of odd integers see A162313.
FORMULA
TABLE ENTRIES
(1)... T(n,k) = (2 - (-1)^(n-k))*binomial(n,k).
GENERATING FUNCTION
(2)... exp(x*t)*(2*exp(t)-exp(-t)) = 1 + (3+x)*t + (1+6*x+x^2)*t^2/2!
+ ....
The e.g.f. can also be written as
(3)... exp(x*t)/G(-t), where G(t) = exp(t)/(2-exp(2*t)) is the e.g.f.
for A080253.
MISCELLANEOUS
The row polynomials form an Appell sequence of polynomials.
Row sums = A151821.
EXAMPLE
Triangle begins
=================================================
n\k|..0.....1.....2.....3.....4.....5.....6.....7
=================================================
0..|..1
1..|..3.....1
2..|..1.....6.....1
3..|..3.....3.....9.....1
4..|..1....12.....6....12.....1
5..|..3.....5....30....10....15.....1
6..|..1....18....15....60....15....18.....1
7..|..3.....7....63....35...105....21....21.....1
...
MAPLE
T:=(n, k)->(2-(-1)^(n-k))*binomial(n, k):
for n from 0 to 10 do seq(T(n, k), k = 0..n) od;
CROSSREFS
A007318, A151821 (row sums), A080253, A124846, A162313 (unsigned matrix inverse).
Sequence in context: A069972 A115017 A088439 * A109446 A088441 A061857
KEYWORD
easy,nonn,tabl
AUTHOR
Peter Bala, Jul 01 2009
EXTENSIONS
Row sums corrected by Peter Bala, Apr 01 2010
STATUS
approved