login
A160562
Triangle of scaled central factorial numbers, T(n,k) = A008958(n,n-k).
6
1, 1, 1, 1, 10, 1, 1, 91, 35, 1, 1, 820, 966, 84, 1, 1, 7381, 24970, 5082, 165, 1, 1, 66430, 631631, 273988, 18447, 286, 1, 1, 597871, 15857205, 14057043, 1768195, 53053, 455, 1, 1, 5380840, 397027996, 704652312, 157280838, 8187608, 129948, 680, 1
OFFSET
0,5
COMMENTS
This is table 4 on page 12 of Gelineau and Zeng, read downwards by columns.
Reversing rows gives A008958.
Apparently the table can also be obtained by deleting each second row and column of A136630.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows n = 0..150, flattened)
Qi Fang, Ya-Nan Feng, and Shi-Mei Ma, Alternating runs of permutations and the central factorial numbers, arXiv:2202.13978 [math.CO], 2022.
Yoann Gelineau and Jiang Zeng, Combinatorial Interpretations of the Jacobi-Stirling Numbers, arXiv:0905.2899 [math.CO], May 18 2009.
FORMULA
T(n,k) = (1/((2*k)!*4^k)) * Sum_{m=0..k} (-1)^(k-m)*A039599(k,m)*(2*m+1)^(2*n). - Werner Schulte, Nov 01 2015
T(n,k) = ((-1)^(n-k)*(2*n+1)!/(2*k+1)!) * [x^(2*n+1)]sin(x)^(2*k+1) = ((2*n+1)!/(2*k+1)!) * [x^(2*n+1)]sinh(x)^(2*k+1). Note that sin(x)^(2*k+1) = (Sum_{i=0..k} (-1)^i*binomial(2*k+1,k-i)*sin((2*i+1)*x))/(2^(2*k)). - Jianing Song, Oct 29 2023
EXAMPLE
Triangle starts:
1;
1, 1;
1, 10, 1;
1, 91, 35, 1;
1, 820, 966, 84, 1;
...
MAPLE
A160562 := proc(n, k) npr := 2*n+1 ; kpr := 2*k+1 ; sinh(t*sinh(x)) ; npr!*coeftayl(%, x=0, npr) ; coeftayl(%, t=0, kpr) ; end: seq(seq(A160562(n, k), k=0..n), n=0..15) ; # R. J. Mathar, Sep 09 2009
MATHEMATICA
T[n_, k_] := Sum[(-1)^(k - m)*(2m + 1)^(2n + 1)*Binomial[2k, k + m]/(k + m + 1), {m, 0, k}]/(4^k*(2k)!);
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 22 2017 *)
CROSSREFS
Cf. A002452 (column k=1), A002453 (column k=2), A000447 (right column k=n-1), A185375 (right column k=n-2).
Sequence in context: A176021 A166972 A364071 * A176243 A022173 A158117
KEYWORD
nonn,tabl
AUTHOR
Jonathan Vos Post, May 19 2009
EXTENSIONS
More terms from R. J. Mathar, Sep 09 2009
STATUS
approved