login
A159628
Decimal expansion of (855171 + 556990*sqrt(2))/577^2.
4
4, 9, 3, 4, 6, 0, 7, 1, 1, 4, 7, 4, 8, 7, 6, 0, 8, 8, 0, 6, 4, 4, 3, 7, 9, 4, 3, 9, 7, 5, 3, 0, 9, 9, 7, 0, 8, 2, 9, 3, 7, 2, 4, 9, 0, 1, 9, 0, 4, 6, 2, 9, 2, 3, 7, 1, 0, 0, 6, 3, 9, 6, 1, 7, 6, 4, 6, 5, 7, 9, 5, 5, 0, 5, 3, 0, 6, 2, 0, 6, 4, 1, 5, 4, 6, 0, 2, 7, 3, 8, 9, 4, 5, 8, 8, 7, 2, 8, 5, 1, 5, 6, 1, 9, 7
OFFSET
1,1
COMMENTS
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = 0, b = A130005.
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = 1, b = A159626.
LINKS
FORMULA
Equals (2180 + 1022*sqrt(2))/(2180 - 1022*sqrt(2)).
Equals (3 + 2*sqrt(2))*(34 - sqrt(2))^2/(34 + sqrt(2))^2.
EXAMPLE
(855171 + 556990*sqrt(2))/577^2 = 4.93460711474876088064...
MATHEMATICA
RealDigits[(855171+556990Sqrt[2])/577^2, 10, 120][[1]] (* Harvey P. Dale, Aug 15 2012 *)
PROG
(PARI) (855171+556990*sqrt(2))/577^2 \\ G. C. Greubel, May 10 2018
(Magma) (855171+556990*Sqrt(2))/577^2; // G. C. Greubel, May 10 2018
CROSSREFS
Cf. A130005, A159626, A002193 (decimal expansion of sqrt(2)), A159627 (decimal expansion of (579+34*sqrt(2))/577).
Sequence in context: A196819 A296448 A217316 * A102753 A200416 A199178
KEYWORD
cons,nonn
AUTHOR
Klaus Brockhaus, Apr 21 2009
STATUS
approved