OFFSET
1,1
COMMENTS
(-33,a(1)) and (A130005(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+577)^2 = y^2.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
FORMULA
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=545, a(2)=577, a(3)=613, a(4)=2657, a(5)=2885, a(6)=3133.
G.f.: (1-x)*(545+1122*x+1735*x^2+1122*x^3+545*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 577*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (579+34*sqrt(2))/577 for n mod 3 = {0, 2}.
Limit_{n -> oo} a(n)/a(n-1) = (855171+556990*sqrt(2))/577^2 for n mod 3 = 1.
EXAMPLE
PROG
(PARI) {forstep(n=-36, 50000000, [3, 1], if(issquare(2*n^2+1154*n+332929, &k), print1(k, ", ")))}
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Apr 21 2009
STATUS
approved