login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159309
L.g.f.: Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} (1 + sigma(n)*x)^n * x^n/n.
1
1, 3, 10, 35, 116, 606, 2990, 11203, 65368, 567558, 3229942, 12730946, 78628616, 666394746, 3968286590, 21143707843, 160244432497, 1602468019110, 20852615681805, 320475672814590, 4102188681702086, 36438823274699332
OFFSET
1,2
FORMULA
a(n) = n * Sum_{k=0..[n/2]} C(n-k,k)*sigma(n-k)^k/(n-k) for n>=1.
EXAMPLE
L.g.f.: L(x) = x + 3*x^2/2 + 10*x^3/3 + 35*x^4/4 + 116*x^5/5 +...
L(x) = (1+x)*x + (1+3*x)^2*x^2/2 + (1+4*x)^3*x^3/3 + (1+7*x)^4*x^4/4 +...
exp(L(x)) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 40*x^5 + 154*x^6 +... (A159308).
PROG
(PARI) {a(n)=n*polcoeff(sum(m=1, n+1, (1+sigma(m)*x+x*O(x^n))^m*x^m/m), n)}
(PARI) {a(n)=n*sum(k=0, n\2, binomial(n-k, k)*sigma(n-k)^k/(n-k))}
CROSSREFS
Cf. A159308 (exp).
Sequence in context: A099907 A128735 A330050 * A112107 A187925 A372852
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 10 2009
STATUS
approved