login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372852
a(n) is the total number of runs of ascents over all flattened Catalan words of length n.
2
1, 3, 10, 35, 123, 427, 1460, 4923, 16405, 54131, 177150, 575731, 1860047, 5978715, 19131880, 60982859, 193710249, 613415779, 1937102450, 6101872707, 19177314211, 60147030923, 188286357660, 588394867675, 1835791987133, 5719198113747, 17793060798310, 55285581766163
OFFSET
1,2
LINKS
Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, Flattened Catalan Words, arXiv:2405.05357 [math.CO], 2024. See p. 7.
FORMULA
From Baril et al.: (Start)
G.f.: x*(1 - 5*x + 8*x^2 - 3*x^2)/((1 - x)^2*(1 - 3*x)^2).
a(n) = (3^(n-1) + 1)*(n + 1)/4. (End)
E.g.f.: exp(x)*(exp(2*x) - 1)*(x - 2)/4.
MATHEMATICA
LinearRecurrence[{8, -22, 24, -9}, {1, 3, 10, 35}, 28]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, May 15 2024
STATUS
approved