login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159069
a(n) = A159068(n)/n.
5
1, 2, 3, 6, 7, 23, 19, 66, 95, 255, 187, 1059, 631, 3227, 5243, 11426, 7711, 51887, 27595, 184911, 232887, 606627, 364723, 2807935, 2405183, 8671943, 10368079, 36873651, 18512791, 167268639, 69273667, 496472226, 551130063, 1856103039
OFFSET
1,2
LINKS
EXAMPLE
Row 6 of Pascal's triangle is 1,6,15,20,15,6,1. The greatest common divisors of n and each integer from 1 to 6 are gcd(1,6)=1, gcd(2,6)=2, gcd(3,6)=3, gcd(4,6)=2, gcd(5,6)=1, and gcd(6,6)=6. So a(6) = (1/6)*( 6*1 + 15*2 + 20*3 + 15*2 + 6*1 + 1*6) = 138/6 = 23. Note that each term of the sum in parentheses is a multiple of 6, so 138 is a multiple of 6.
MAPLE
A159068 := proc(n) add(binomial(n, k)*gcd(k, n), k=1..n) ; end: A159069 := proc(n) A159068(n)/n ; end: seq(A159069(n), n=1..80) ; # R. J. Mathar, Apr 06 2009
MATHEMATICA
Table[Sum[Binomial[n, k] GCD[k, n], {k, n}]/n, {n, 34}] (* Michael De Vlieger, Aug 29 2017 *)
PROG
(PARI) a(n) = sum(k=1, n, binomial(n, k) * gcd(k, n))/n; \\ Michel Marcus, Aug 30 2017
CROSSREFS
Cf. A159068.
Sequence in context: A073317 A371293 A064731 * A162681 A070301 A329294
KEYWORD
nonn
AUTHOR
Leroy Quet, Apr 04 2009
EXTENSIONS
Extended by R. J. Mathar, Apr 06 2009
STATUS
approved