login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158709
Primes p such that p + ceiling(p/2) is prime.
15
2, 3, 7, 11, 19, 31, 47, 59, 67, 71, 127, 131, 151, 167, 179, 211, 239, 307, 311, 347, 379, 431, 439, 467, 479, 547, 571, 587, 607, 619, 631, 647, 727, 739, 787, 811, 839, 859, 907, 911, 967, 991, 1039, 1091, 1231, 1259, 1319, 1399, 1427, 1471, 1511, 1531, 1559
OFFSET
1,1
COMMENTS
Or, 2 along with primes p such that Sum_{x=1..p} (1 - (-1)^x*x) is prime. - Juri-Stepan Gerasimov, Jul 14 2009
Apart from the first term, primes of the form 4*k-1 such that 6*k-1 is also prime. - Charles R Greathouse IV, Nov 09 2011
If both p and q are in A158709 and p + q == 2 (mod 4), then A006370(A006370(p + q)) = A006370((p + q)/2) = 3*(p + q)/2 + 1 is the sum of the two primes p+ceiling(p/2) and q+ceiling(q/2). - Roderick MacPhee, Feb 23 2018
LINKS
MATHEMATICA
lst={}; Do[p=Prime[n]; If[PrimeQ[Ceiling[p/2]+p], AppendTo[lst, p]], {n, 6!}]; lst
Select[Prime@ Range@ 250, PrimeQ@ Ceiling[3#/2] &] (* Vincenzo Librandi, Apr 15 2013 and slightly modified by Robert G. Wilson v, Feb 26 2018 *)
PROG
(PARI) forprime(p=2, 1e4, if(isprime(p+ceil(p/2)), print1(p", "))) \\ Charles R Greathouse IV, Nov 09 2011
(PARI) print1(2); forprime(p=3, 1e4, if(p%4==3&&isprime(p\4*6+5), print1(", "p))) \\ Charles R Greathouse IV, Nov 09 2011
CROSSREFS
Cf. A158708.
Sequence in context: A210394 A211203 A350402 * A180422 A055502 A003173
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Corrected by Charles R Greathouse IV, Mar 18 2010
STATUS
approved