login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157634
Triangle T(n, k) = 1 if k = 0 or k = n, otherwise n^5 - k^5 - (n-k)^5, read by rows.
1
1, 1, 1, 1, 30, 1, 1, 210, 210, 1, 1, 780, 960, 780, 1, 1, 2100, 2850, 2850, 2100, 1, 1, 4650, 6720, 7290, 6720, 4650, 1, 1, 9030, 13650, 15540, 15540, 13650, 9030, 1, 1, 15960, 24960, 29400, 30720, 29400, 24960, 15960, 1, 1, 26280, 42210, 51030, 54900, 54900, 51030, 42210, 26280, 1
OFFSET
0,5
FORMULA
T(n, k) = 1 if k = 0 or k = n, otherwise 5*n*k*(n-k)*(n^2 -n*k +k^2).
T(n, n-k) = T(n, k).
Sum_{k=0..n} T(n, k) = 2 - [n=0] + 30*A006858(n).
From G. C. Greubel, Dec 13 2021: (Start)
T(n, 1) = [n<2] + 30*A006325(n).
T(2*n, n) = [n=0] + 30*A000584(n). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 30, 1;
1, 210, 210, 1;
1, 780, 960, 780, 1;
1, 2100, 2850, 2850, 2100, 1;
1, 4650, 6720, 7290, 6720, 4650, 1;
1, 9030, 13650, 15540, 15540, 13650, 9030, 1;
1, 15960, 24960, 29400, 30720, 29400, 24960, 15960, 1;
1, 26280, 42210, 51030, 54900, 54900, 51030, 42210, 26280, 1;
1, 40950, 67200, 82950, 91200, 93750, 91200, 82950, 67200, 40950, 1;
MATHEMATICA
T[n_, k_]:= If[n*k*(n-k)==0, 1, n^5 - (k^5 + (n-k)^5)];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten
PROG
(Magma)
A157634:= func< n, k | k eq 0 or k eq n select 1 else n^5 - (k^5 + (n-k)^5) >;
[A157634(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 13 2021
(Sage)
def A157634(n, k): return 1 if (k==0 or k==n) else n^5 - (k^5 + (n-k)^5)
flatten([[A157634(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Dec 13 2021
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Mar 03 2009
STATUS
approved