OFFSET
1,3
COMMENTS
a(n) = the product of the distinct parts of the partition with Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(252)= 8; indeed, the partition having Heinz number 252 = 2*2*3*3*7 is [1,1,2,2,4] and 1*2*4 = 8. - Emeric Deutsch, Jun 03 2015
Multiplicative with a(prime(k)^e) = k. Note that in contrast to A003963, this is not fully multiplicative. a(1) = 1 as an empty product. - Antti Karttunen, Aug 13 2017
LINKS
FORMULA
EXAMPLE
Here primepi (A000720) gives the index of its prime argument:
n = 14 = 2 * 7, thus a(14) = primepi(2)*primepi(7) = 1*4 = 4.
n = 21 = 3 * 7, thus a(21) = primepi(3)*primepi(7) = 2*4 = 8.
n = 168 = 2^3 * 3 * 7, thus a(168)= primepi(2)*primepi(3)*primepi(7) = 1*2*4 = 8.
MAPLE
with(numtheory): a := proc(n) options operator, arrow: product(pi(factorset(n)[j]), j = 1 .. nops(factorset(n))) end proc: seq(a(n), n = 1 .. 100); # Emeric Deutsch, Jun 03 2015
MATHEMATICA
Table[Apply[Times, PrimePi@ FactorInteger[n][[All, 1]]] + Boole[n == 1], {n, 100}] (* Michael De Vlieger, Aug 14 2017 *)
PROG
(Scheme) (define (A156061 n) (if (= 1 n) 1 (* (A055396 n) (A156061 (A028234 n))))) ;; Antti Karttunen, Aug 13 2017
(PARI) a(n) = {my(f=factor(n)); for (k=1, #f~, f[k, 1] = primepi(f[k, 1]); f[k, 2] = 1); factorback(f); } \\ Michel Marcus, Aug 14 2017
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Ctibor O. Zizka, Feb 03 2009
EXTENSIONS
a(1) = 1 prepended by Antti Karttunen, Aug 13 2017
STATUS
approved