OFFSET
0,2
COMMENTS
LINKS
FORMULA
Other identities. For all n >= 0:
A266193(a(n)) = n.
EXAMPLE
Factorial base representation of 5 is A007623(5) = "21". Shifting this once left (that is, appending 0 to the end) yields "210", which is factorial base representation for 14. Thus a(5) = 14.
MATHEMATICA
Table[Function[b, FromDigits[IntegerDigits[n, b]~Join~{0}, b]]@ MixedRadix[Reverse@ Range@ 12], {n, 0, 57}] (* Michael De Vlieger, May 30 2016, Version 10.2 *)
PROG
(Scheme)
(define (A153880 n) (let loop ((n n) (z 0) (i 2) (f 2)) (cond ((zero? n) z) (else (loop (floor->exact (/ n i)) (+ (* f (modulo n i)) z) (+ 1 i) (* f (+ i 1)))))))
(Python)
from sympy import factorial as f
def a007623(n, p=2): return n if n<p else a007623((n//p), p+1)*10 + n%p
def a(n):
x = (str(a007623(n)) + '0')[::-1]
return 0 if n==0 else sum(int(x[i])*f(i + 1) for i in range(len(x)))
print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 20 2017
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Antti Karttunen, Jan 03 2009
STATUS
approved