OFFSET
0,13
COMMENTS
Apart from initial terms, same as A097992. - Philippe Deléham, Dec 06 2008
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).
FORMULA
From R. J. Mathar and Philippe Deléham, Dec 06 2008: (Start)
a(n) = floor(n/6) = a(n-6) + 1.
G.f.: x^6/((1-x)^2*(1+x)*(1+x+x^2)*(x^2-x+1)). (End)
a(n) = (6*n - 15 + 3*(-1)^n + 12*sin( (2*n+1)*Pi/6 ) + 4*sqrt(3)*sin( (2n+1)*Pi/3) )/36.
a(n) = floor( (3*n-2)/2 - (4*n-3)/3 ). - Robert G. Wilson v, Jun 04 2011
E.g.f.: (6*cos(sqrt(3)*x/2)*cosh(x/2) + 3*(x - 2)*cosh(x) + 2*sqrt(3)*sin(sqrt(3)*x/2)*(2*cosh(x/2) + sinh(x/2)) + 3*(x - 3)*sinh(x))/18. - Stefano Spezia, Nov 13 2022
MAPLE
MATHEMATICA
Table[Floor[n/6], {n, 0, 100}] (* Wesley Ivan Hurt, Dec 10 2013 *)
PROG
(Sage) [floor(n/6) for n in range(0, 90)] # Zerinvary Lajos, Dec 02 2009
(PARI) a(n)=n\6 \\ Charles R Greathouse IV, Jun 04 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Joseph Stephan Orlovsky, Dec 05 2008
STATUS
approved