login
A151963
(Length of preperiodic part) + (length of cycle) of trajectory of n under iteration of the Kaprekar map in A151949.
10
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 7, 5, 6, 4, 4, 6, 5, 7, 3, 2, 3, 7, 5, 6, 4, 4, 6, 5, 7, 3, 2, 3, 7, 5, 6, 4, 4, 6, 5, 7, 3, 2, 3, 7, 5, 6, 4, 4, 6, 5, 7, 3, 2, 3, 7, 5, 6, 4, 4, 6, 5, 7, 3, 2, 3, 7, 5, 6, 4, 4, 6, 5, 7, 3, 2, 3, 7, 5, 6, 4, 4, 6, 5, 7, 3, 2, 3, 7, 5, 6, 4, 4, 6, 5, 7, 3
OFFSET
0,2
COMMENTS
Equals A151962(n) + 1 iff n < 10001 (when a cycle of length greater than 1 occurs for the first time).
LINKS
EXAMPLE
13->18->63->27->45->9->0->0, so a(13)=6+1 = 7.
MAPLE
# Maple program from R. J. Mathar:
A151949 := proc(n)
local tup;
tup := sort(convert(n, base, 10)) ;
add( (op(i, tup)-op(-i, tup)) *10^(i-1), i=1..nops(tup)) :
end:
A151963 := proc(n)
local tra, x ;
tra := [n] ;
x := n ;
while true do
x := A151949(x) ;
if x in tra then
RETURN(nops(tra)) ;
fi;
tra := [op(tra), x] :
od:
end:
seq(A151963(n), n=0..120) ;
MATHEMATICA
f[n_] := Module[{idn = IntegerDigits@n, idns}, idns = Sort@ idn; FromDigits@ Reverse@ idns - FromDigits@ idns]; g[n_] := Length[ NestWhileList[ f, n, UnsameQ, All]] - 1; Table[g@n, {n, 0, 104}] (* Robert G. Wilson v, Aug 20 2009 *)
CROSSREFS
In other bases: A164886 (base 2), A164996 (base 3), A165015 (base 4), A165035 (base 5), A165054 (base 6), A165074 (base 7), A165093 (base 8), A165113 (base 9). - Joseph Myers, Sep 05 2009
Sequence in context: A307713 A328680 A256707 * A191291 A131841 A309432
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Aug 19 2009
EXTENSIONS
Typos corrected by Joseph Myers, Aug 20 2009
More terms from R. J. Mathar and Robert G. Wilson v, Aug 20 2009
STATUS
approved