login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147840
a(n)=10*a(n-1)-8*a(n-2), a(0)=1, a(1)=8 .
2
1, 8, 72, 656, 5984, 54592, 498048, 4543744, 41453056, 378180608, 3450181632, 31476371456, 287162261504, 2619811643392, 23900818341888, 218049690271744, 1989290355982336, 18148506037649408, 165570737528635392
OFFSET
0,2
COMMENTS
a(n) = sum_{k=0..n} 2^n*binomial(n,k)*A007482(k) = 2^n*A052913(n). - R. J. Mathar, Oct 15 2012
FORMULA
a(n)=Sum_{k, 0<=k<=n}A147703(n,k)*7^k . G.f.: (1-2x)/(1-10x+8*x^2).
a(n)= ((17+3*sqrt(17))/34)*(5+sqrt(17))^n + ((17-3*sqrt(17))/34)*(5-sqrt(17))^n [From Richard Choulet, Nov 20 2008]
G.f.: (1-2x)/(1-10x+8x^2). - Harvey P. Dale, Dec 02 2021
MATHEMATICA
LinearRecurrence[{10, -8}, {1, 8}, 20] (* Harvey P. Dale, Dec 02 2021 *)
CROSSREFS
Sequence in context: A156566 A055275 A155198 * A115970 A078995 A264913
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Nov 14 2008
STATUS
approved