login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264913
Number of 8-ascent sequences of length n with no consecutive repeated letters.
2
1, 1, 8, 72, 684, 6876, 72924, 814056, 9544164, 117284766, 1507813722, 20243939784, 283383218358, 4129738188546, 62563457162916, 983985264479016, 16046556350152008, 271012423865891076, 4735104984115971090, 85496795448023574282, 1593757450233067980306
OFFSET
0,3
LINKS
S. Kitaev, J. Remmel, p-Ascent Sequences, arXiv:1503.00914 [math.CO], 2015.
MAPLE
b:= proc(n, i, t) option remember; `if`(n<1, 1, add(
`if`(j=i, 0, b(n-1, j, t+`if`(j>i, 1, 0))), j=0..t+8))
end:
a:= n-> (b(n-1, 0$2)):
seq(a(n), n=0..30);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Sum[If[j == i, 0, b[n - 1, j, t + If[j > i, 1, 0]]], {j, 0, t + 8}]]; a[n_] := b[n - 1, 0, 0];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 09 2017, after Alois P. Heinz *)
CROSSREFS
Column k=8 of A264909.
Sequence in context: A147840 A115970 A078995 * A082414 A145303 A098411
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 28 2015
STATUS
approved