login
A147300
a(n) = smallest value of parameter m such that the function rad(m*n*(n - m)) has minimal value n=2,3,4,..., 0 < m < n where the function rad(k) (also called radical(k)) is the product of distinct prime divisors of k.
11
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 2, 1, 2, 1, 4, 5, 1, 9, 3, 1, 1, 11, 7, 1, 9, 1, 16, 1, 1, 1, 2, 1, 1, 1, 1, 25, 4, 5, 1, 1, 25, 9, 27, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 7, 1, 1, 25, 11, 1, 13, 1, 4, 1, 1, 1, 2, 1, 4, 5, 23, 7, 8, 1, 27, 11, 1, 13, 14, 1, 1, 17, 1, 1
OFFSET
2,10
COMMENTS
The function rad(k) is used in ABC conjecture applications.
For smallest values of the function rad(m n (n - m)) see A147298.
For the largest values of the function rad(m n (n - m)) see A147299.
For numbers m at which rad(m*n*(n - m)) reaches minimal value see A147300.
For numbers m at which rad(m*n*(n - m)) reaches maximal value see A147301.
For sequence in which each value log(n)/log(A147298(n)) reaches records see A147302.
MATHEMATICA
logmax = 0; aa = {}; bb = {}; cc = {}; dd = {}; ee = {}; ff = {}; gg \ = {}; Do[min = 10^100; max = 0; ile = 0; Do[If[GCD[m, n, n - m] == 1, ile = ile + 1; s = m n (n - m); k = FactorInteger[s]; g = 1; Do[g = g k[[p]][[1]], {p, 1, Length[k]}]; If[g > max, max = g; mmax = m]; If[g < min, min = g; mmin = m]], {m, 1, n - 1}]; AppendTo[aa, min]; AppendTo[bb, max]; AppendTo[cc, mmax]; AppendTo[dd, mmin]; AppendTo[gg, ile]; If[(Log[n]/Log[min]) > logmax, logmax = (Log[n]/Log[min]); AppendTo[ee, {N[logmax], n, mmin, min, mmax, max}]; Print[{N[logmax], n, mmin, min, mmax, max}]; AppendTo[ff, n]], {n, 2, 129}]; dd (* Artur Jasinski *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Nov 05 2008
STATUS
approved