login
A145460
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where sequence a_k of column k is the exponential transform of C(n,k).
16
1, 1, 1, 1, 1, 2, 1, 0, 3, 5, 1, 0, 1, 10, 15, 1, 0, 0, 3, 41, 52, 1, 0, 0, 1, 9, 196, 203, 1, 0, 0, 0, 4, 40, 1057, 877, 1, 0, 0, 0, 1, 10, 210, 6322, 4140, 1, 0, 0, 0, 0, 5, 30, 1176, 41393, 21147, 1, 0, 0, 0, 0, 1, 15, 175, 7273, 293608, 115975, 1, 0, 0, 0, 0, 0, 6, 35, 1176, 49932, 2237921, 678570
OFFSET
0,6
COMMENTS
A(n,k) is also the number of ways of placing n labeled balls into indistinguishable boxes, where in each filled box k balls are seen at the top. E.g. A(3,1)=10:
|1.| |2.| |3.| |1|2| |1|2| |1|3| |1|3| |2|3| |2|3| |1|2|3|
|23| |13| |12| |3|.| |.|3| |2|.| |.|2| |1|.| |.|1| |.|.|.|
+--+ +--+ +--+ +-+-+ +-+-+ +-+-+ +-+-+ +-+-+ +-+-+ +-+-+-+
LINKS
N. J. A. Sloane, Transforms
FORMULA
A(0,k) = 1 and A(n,k) = Sum_{i=0..n-1} binomial(n-1,i) * binomial(i+1,k) * A(n-1-i,k) for n > 0. - Seiichi Manyama, Sep 28 2017
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 0, 0, 0, 0, ...
2, 3, 1, 0, 0, 0, ...
5, 10, 3, 1, 0, 0, ...
15, 41, 9, 4, 1, 0, ...
52, 196, 40, 10, 5, 1, ...
MAPLE
exptr:= proc(p) local g; g:=
proc(n) option remember; `if`(n=0, 1,
add(binomial(n-1, j-1) *p(j) *g(n-j), j=1..n))
end: end:
A:= (n, k)-> exptr(i-> binomial(i, k))(n):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
Exptr[p_] := Module[{g}, g[n_] := g[n] = If[n == 0, 1, Sum[Binomial[n-1, j-1] *p[j]*g[n-j], {j, 1, n}]]; g]; A[n_, k_] := Exptr[Function[i, Binomial[i, k]]][n]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jan 15 2014, translated from Maple *)
PROG
(Ruby)
def ncr(n, r)
return 1 if r == 0
(n - r + 1..n).inject(:*) / (1..r).inject(:*)
end
def A(k, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + ncr(i - 1, j) * ncr(j + 1, k) * ary[i - 1 - j]}}
ary
end
def A145460(n)
a = []
(0..n).each{|i| a << A(i, n - i)}
ary = []
(0..n).each{|i|
(0..i).each{|j|
ary << a[i - j][j]
}
}
ary
end
p A145460(20) # Seiichi Manyama, Sep 28 2017
CROSSREFS
A(2n,n) gives A029651.
Sequence in context: A099493 A088523 A222211 * A292978 A202178 A035543
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Oct 10 2008
STATUS
approved