login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145388
Sum of (k,n)_* for k=1,2,...,n, where (k,n)_* is the greatest divisor of k which is a unitary divisor of n.
5
1, 3, 5, 7, 9, 15, 13, 15, 17, 27, 21, 35, 25, 39, 45, 31, 33, 51, 37, 63, 65, 63, 45, 75, 49, 75, 53, 91, 57, 135, 61, 63, 105, 99, 117, 119, 73, 111, 125, 135, 81, 195, 85, 147, 153, 135, 93, 155, 97, 147, 165, 175, 105, 159
OFFSET
1,2
COMMENTS
A unitary analog of Pillai's function A018804; another unitary analog of A018804 is A089912.
The sequence is the row sums of the following triangle of (k,n)_* with rows n and columns 1 <= k <= n (R. J. Mathar, Jun 01 2011):
1;
1, 2;
1, 1, 3;
1, 1, 1, 4;
1, 1, 1, 1, 5;
1, 2, 3, 2, 1, 6;
1, 1, 1, 1, 1, 1, 7;
1, 1, 1, 1, 1, 1, 1, 8;
1, 1, 1, 1, 1, 1, 1, 1, 9;
1, 2, 1, 2, 5, 2, 1, 2, 1, 10;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11;
1, 1, 3, 4, 1, 3, 1, 4, 3, 1, 1, 12;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13;
1, 2, 1, 2, 1, 2, 7, 2, 1, 2, 1, 2, 1, 14;
Sum_{k<=x} a(n) = Ax^2 log x + O(x^2) with A = Product(1 - 1/(p+1)^2) * 3/Pi^2 = 0.23584030... where the product is over the primes. That is, the average value of a(n) is A n log n. - Charles R Greathouse IV, Mar 21 2012
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
S. Chen and W. Zhai, Reciprocals of the Gcd-Sum Functions, J. Int. Seq. 14 (2011) # 11.8.3.
László Tóth, The unitary analogue of Pillai's arithmetical function, Collectanea Mathematica 40:1 (1989), pp. 19-30.
László Tóth, The unitary analogue of Pillai's arithmetical function II, Notes Number Theory Discrete Math. 2 (1996), no 2, 40-46.
László Tóth, A survey of gcd-sum functions, J. Int. Seq. 13 (2010) # 10.8.1.
FORMULA
Multiplicative: a(p^e) = 2*p^e - 1 for every prime power p^e.
a(n) = Sum_{k=1..n} A034444(n/gcd(n,k)) = Sum_{d|n} A000010(d) * A034444(d). - Daniel Suteu, May 26 2019
a(n) = Sum_{d|n, gcd(d, n/d) = 1} d * uphi(n/d), where uphi is A047994. - Amiram Eldar, May 29 2020
a(n) = Sum_{d|n} abs(A023900(d))*n/d. Verified for the first 10000 terms. - Mats Granvik, Feb 13 2021
MAPLE
A145388 := proc(n) option remember; local pf, p ; if n = 1 then 1; else pf := ifactors(n)[2] ; if nops(pf) = 1 then 2*n-1 ; else mul(procname(op(1, p)^op(2, p)), p=pf) ; end if; end if; end proc:
seq(A145388(n), n=1..70) ; # R. J. Mathar, Jan 07 2011
MATHEMATICA
f[p_, e_] := 2*p^e - 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 29 2020 *)
PROG
(PARI) a(n)=n=factor(n); prod(i=1, #n[, 1], 2*n[i, 1]^n[i, 2]-1) \\ Charles R Greathouse IV, Mar 21 2012
CROSSREFS
KEYWORD
mult,nonn
AUTHOR
Laszlo Toth, Oct 10 2008
STATUS
approved