login
A145195
Odd composite numbers n with property that at least one prime divisor p of n is a substring of the binary representation of n.
1
15, 27, 39, 45, 51, 55, 57, 63, 75, 85, 87, 91, 93, 95, 99, 105, 111, 117, 119, 123, 125, 135, 141, 147, 153, 155, 159, 165, 171, 175, 177, 183, 185, 187, 189, 195, 201, 205, 207, 213, 215, 219, 221, 225, 231, 235, 237, 243, 245, 247, 249, 255, 267, 279, 285
OFFSET
1,1
COMMENTS
It is obvious that all even numbers and all prime numbers would meet this criterion.
LINKS
EXAMPLE
15 is 1111_2 and 15=3*5 where 3 is 11_2, so 15 is a term.
MATHEMATICA
f[n_] := Block[{nb = ToString@ FromDigits@ IntegerDigits[n, 2], psb = ToString@ FromDigits@ IntegerDigits[ #, 2] & /@ First@ Transpose@ FactorInteger@n, c = 0, k = 1}, lmt = 1 + Length@ psb; While[k < lmt, If[ StringCount[nb, psb[[k]]] > 0, c++ ]; k++ ]; c]; f[1] = 0; Select[ Range@ 286, !PrimeQ@ # && OddQ@ # && f@# > 0 &]
CROSSREFS
Sequence in context: A307854 A053177 A349175 * A096022 A097222 A004069
KEYWORD
easy,nonn,base
AUTHOR
Robert G. Wilson v, Oct 03 2008
STATUS
approved