login
A014076
Odd nonprimes.
79
1, 9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65, 69, 75, 77, 81, 85, 87, 91, 93, 95, 99, 105, 111, 115, 117, 119, 121, 123, 125, 129, 133, 135, 141, 143, 145, 147, 153, 155, 159, 161, 165, 169, 171, 175, 177, 183, 185, 187, 189, 195, 201, 203, 205, 207
OFFSET
1,2
COMMENTS
Same as A071904 except for the initial term 1 (which is not composite).
Numbers n such that product of first n odd numbers divided by sum of the first n odd numbers is an integer : 1*3*5*...*(2*n - 1) / (1 + 3 + 5 + ... + (2*n - 1)) = c. - Ctibor O. Zizka, Jun 26 2010
Conjecture: There exist infinitely many pairs [a(n), a(n)+6] such that a(n)/3 and (a(n)+6)/3 are twin primes. - Eric Desbiaux, Sep 25 2014.
Odd numbers 2*n + 1 such that (2*n)!/(2*n + 1) is an integer. Odd terms of A056653. - Peter Bala, Jan 24 2017
LINKS
FORMULA
A000035(a(n))*(1 - A010051(a(n))) = 1. - Reinhard Zumkeller, Sep 30 2011
a(n) ~ 2n. - Charles R Greathouse IV, Jul 02 2013
(a(n+2)-1)/2 - pi(a(n+2)-1) = n. - Anthony Browne, May 25 2016. Proof from Robert Israel: This follows by induction on n. If f(n) = (a(n+2)-1)/2 - pi(a(n+2)-1), one can show f(n+1) - f(n) = 1 (there are three cases to consider, depending on primeness of a(n+2) + 2 and a(n+2) + 4).
Union of A091113 and A091236. - R. J. Mathar, Oct 02 2018
MAPLE
remove(isprime, [seq(i, i=1..1000, 2)]); # Robert Israel, May 25 2016
for n from 0 to 120 do
if irem(factorial(2*n), 2*n+1) = 0 then print(2*n+1) end if;
end do: # Peter Bala, Jan 24 2017
MATHEMATICA
Select[Range@210, !PrimeQ@ # && OddQ@ # &] (* Robert G. Wilson v, Sep 22 2008 *)
Select[Range[1, 199, 2], PrimeOmega[#] != 1 &] (* Alonso del Arte, Nov 19 2012 *)
PROG
(Haskell)
a014076 n = a014076_list !! (n-1)
a014076_list = filter ((== 0) . a010051) a005408_list
-- Reinhard Zumkeller, Sep 30 2011
(PARI) is(n)=n%2 && !isprime(n) \\ Charles R Greathouse IV, Nov 24 2012
(Python)
from sympy import primepi
def A014076(n):
if n == 1: return 1
m, k = n-1, primepi(n) + n - 1 + (n>>1)
while m != k:
m, k = k, primepi(k) + n - 1 + (k>>1)
return m # Chai Wah Wu, Jul 31 2024
CROSSREFS
Cf. A002808, A005408; first differences: A067970, A196274; A047846.
Cf. A056653.
Sequence in context: A270574 A071904 A326586 * A067800 A155474 A100819
KEYWORD
nonn,easy
STATUS
approved