login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143850
Numbers of the form (p^2 + q^2)/2, for odd primes p and q.
5
9, 17, 25, 29, 37, 49, 65, 73, 85, 89, 97, 109, 121, 145, 149, 157, 169, 185, 193, 205, 229, 241, 265, 269, 277, 289, 325, 349, 361, 409, 425, 433, 445, 481, 485, 493, 505, 529, 541, 565, 601, 625, 661, 685, 689, 697, 709, 745, 769, 829, 841, 845, 853, 865
OFFSET
1,1
COMMENTS
The primes in this sequence are listed in A103739.
a(n) mod 4 = 1. See A227697 for related sequence. - Richard R. Forberg, Sep 22 2013
The squares of primes in this sequence form the subsequence A001248 \ {4}. - Bernard Schott, Jul 09 2022
MATHEMATICA
Take[Union[Total[#]/2&/@(Tuples[Prime[Range[2, 20]], 2]^2)], 60] (* Harvey P. Dale, Dec 28 2014 *)
PROG
(PARI) list(lim)=my(v=List(), p2); lim\=1; if(lim<9, lim=8); forprime(p=3, sqrtint(2*lim-9), p2=p^2; forprime(q=3, min(sqrtint(2*lim-p2), p), listput(v, (p2+q^2)/2))); Set(v) \\ Charles R Greathouse IV, Feb 14 2017
CROSSREFS
Cf. A075892 (a subsequence).
Sequence in context: A073160 A242987 A346146 * A017077 A004768 A226323
KEYWORD
nonn
AUTHOR
T. D. Noe, Sep 03 2008
STATUS
approved