login
A143851
Primes p that divide the sum of their residues modulo all smaller primes (=A024934(p)).
3
2, 13, 167, 2239, 439867, 724031017, 1990127567, 54892225873
OFFSET
1,1
COMMENTS
Also, primes p such that p divides A024924(p). The prime terms of A065132.
EXAMPLE
13 is congruent to 1,1,3,6 and 2, modulo 2,3,5,7 and 11 respectively. 1+1+3+6+2=13, which is a multiple of the original number, 13. So the original number, is in the sequence.
MATHEMATICA
For[n = 1, n < 1000001, n++, p = Prime[n]; m = Mod[Sum[Mod[p, Prime[i]], {i, 1, n - 1}], p]; If[m == 0, Print[p]]]
CROSSREFS
Sequence in context: A258224 A351021 A078363 * A088316 A006905 A119400
KEYWORD
more,nonn
AUTHOR
Neil Fernandez, Sep 03 2008
EXTENSIONS
a(6)-a(8) from Max Alekseyev, Feb 10 2012
STATUS
approved