login
A143343
Triangle T(n,k) (n>=0, 1<=k<=n+1) read by rows: T(n,1)=1 for n>=0, T(1,2)=2. If n>=3 is odd then T(n,k)=1 for all k. If n>=3 is even then if k is prime and k-1 divides n then T(n,k)=k, otherwise T(n,k)=1.
3
1, 1, 2, 1, 2, 3, 1, 1, 1, 1, 1, 2, 3, 1, 5, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 5, 1, 7, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
0,3
COMMENTS
By the von Stadt-Clausen theorem, the product of the terms in row n is the denominator of the Bernoulli number B_n.
REFERENCES
H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.
EXAMPLE
The triangle begins:
1,
1,2,
1,2,3,
1,1,1,1,
1,2,3,1,5,
1,1,1,1,1,1,
1,2,3,1,1,1,7,
1,1,1,1,1,1,1,1,
1,2,3,1,5,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,
1,2,3,1,1,1,1,1,1,1,11,
1,1,1,1,1,1,1,1,1,1,1,1,
1,2,3,1,5,1,7,1,1,1,1,1,13,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,
...
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Entry revised by N. J. A. Sloane, Aug 10 2019
STATUS
approved