login
A143305
Decimal expansion of van der Corput's constant.
2
3, 3, 6, 4, 3, 1, 7, 5, 7, 8, 1, 5, 5, 8, 9, 9, 1, 0, 6, 0, 6, 7, 7, 1, 3, 3, 8, 6, 5, 0, 3, 4, 4, 1, 2, 6, 9, 4, 5, 6, 7, 1, 1, 6, 5, 2, 1, 6, 1, 2, 3, 5, 4, 2, 0, 9, 5, 5, 5, 7, 7, 7, 8, 0, 8, 1, 3, 6, 2, 7, 8, 2, 1, 1, 6, 8, 5, 6, 2, 3, 2, 3, 7, 7, 4, 5, 7, 6, 3, 4, 7, 7, 3, 7, 3, 9, 0, 9, 3, 4, 1, 0, 9, 3, 8
OFFSET
1,1
COMMENTS
Named after the Dutch mathematician Johannes Gaultherus van der Corput (1890-1975). - Amiram Eldar, Jun 06 2021
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, pp. 245-246.
LINKS
J. G. van der Corput, Zahlentheoretische abschätzungen, Mathematische Annalen, Vol. 84, No. 1 (1921), pp. 53-79; alternative link.
Eric Weisstein's World of Mathematics, van der Corput's Constant.
FORMULA
Equals 2*sqrt(2) * Integral_{x=0..sqrt(Pi/2-c)} cos(x^2 + c) dx, where c = A143306. - Amiram Eldar, Jun 06 2021
EXAMPLE
3.3643175781558991060...
MATHEMATICA
c0 = c /. FindRoot[ Cos[c]*FresnelS[Sqrt[1 - 2*c/Pi]] + FresnelC[Sqrt[1 - 2*c/Pi]]*Sin[c] == 0, {c, -1}, WorkingPrecision -> 110]; m = 2*Sqrt[Pi]*(Cos[c0]*FresnelC[Sqrt[1 - 2*c0/Pi]] - FresnelS[Sqrt[1 - 2*c0/Pi]]*Sin[c0] ) ; RealDigits[m, 10, 105][[1]] (* Jean-François Alcover, Jul 16 2013, after Eric W. Weisstein *)
CROSSREFS
Cf. A143306.
Sequence in context: A278663 A086492 A372036 * A051472 A257957 A369501
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Aug 05 2008
STATUS
approved