login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A142964
a(n) = 6*2^n - 2*n - 5.
3
1, 5, 15, 37, 83, 177, 367, 749, 1515, 3049, 6119, 12261, 24547, 49121, 98271, 196573, 393179, 786393, 1572823, 3145685, 6291411, 12582865, 25165775, 50331597, 100663243, 201326537, 402653127, 805306309, 1610612675, 3221225409, 6442450879, 12884901821
OFFSET
0,2
COMMENTS
Previous name was: One half of second column (m=1) of triangle A142963.
Essentially a duplicate of A050488. - Johannes W. Meijer, Feb 20 2009
REFERENCES
Eric Billault, Walter Damin, Robert Ferréol, Rodolphe Garin, MPSI Classes Prépas - Khôlles de Maths, Exercices corrigés, Ellipses, 2012, exercice 2.22 (1) pp 26, 43-44.
FORMULA
a(n) = A142693(n+2,1)/2.
From Johannes W. Meijer, Feb 20 2009: (Start)
a(n) = 4a(n-1) - 5a(n-2) + 2a(n-3) for n > 2 with a(0) = 1, a(1) = 5, a(2) = 15.
G.f.: (1+z)/((1-z)^2*(1-2*z)). (End)
a(n) = Sum_{i=0..n} Sum_{j=0..n} 2^min(i,j) (Billault et al) (compare with A339771 that has max instead of min). - Bernard Schott, Dec 16 2020
a(n) = 2*A066524(n+1) - A339771(n). - Kevin Ryde, Dec 17 2020
E.g.f.: 6*exp(2*x) - exp(x)*(5 + 2*x). - Stefano Spezia, Dec 17 2020
EXAMPLE
a(3) = 6*2^3 - 2*3 - 5 = 37.
MAPLE
seq(6*2^n-2*n-5, n=0..40); # Bernard Schott, Dec 16 2020
PROG
(PARI) Vec((1+z)/((1-z)^2*(1-2*z)) + O(z^50)) \\ Michel Marcus, Jun 18 2017
CROSSREFS
Cf. A142965 (m=2 column/4).
Equals A050488(n+1).
Equals A156920(n+1,1).
Equals A156919(n+1,1)/2^n.
Partial sums of A033484.
Sequence in context: A213487 A005491 A348780 * A050488 A188282 A014316
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 15 2008
EXTENSIONS
New name using a formula of Bernard Schott by Peter Luschny, Dec 17 2020
STATUS
approved