login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A142963
Triangle read by rows, coefficients of the polynomials P(k, x) = (1/2) Sum_{p=0..k-1} Stirling2(k, p+1)*x^p*(1-4*x)^(k-1-p)*(2*p+2)!/(p+1)!.
15
1, 1, 2, 1, 10, 4, 1, 30, 72, 8, 1, 74, 516, 464, 16, 1, 166, 2584, 7016, 2864, 32, 1, 354, 10740, 64240, 84480, 17376, 64, 1, 734, 40008, 450280, 1321760, 949056, 104704, 128, 1, 1498, 139108, 2681296, 14713840, 24198976, 10223488, 629248, 256, 1, 3030, 462264, 14341992
OFFSET
1,3
COMMENTS
Previous name: Table of coefficients of row polynomials of certain o.g.f.s.
The o.g.f.s G(k, x) for the k-family of sequences S(k, n):= Sum_{p=0..n} p^k*binomial(2*p, p)*binomial(2*(n-p), n-p), k=0,1,... (convolution of two sequences involving the central binomial coefficients) are 1/(1-4*x) for k=0 and 2*x*P(k, x)/(1-4*x)^(k+1) for k=1,2,..., with the row polynomials P(k, x) = Sum_{m=0..k-1} a(n,m)*x^m).
The author was led to compute the sums S(k, n) by a question asked by M. Greiter, Jun 27 2008.
In order to keep the index k>=1 of Sigma(k, n) also for the polynomials P(k, x), their degree is then k-1.
LINKS
Wolfdieter Lang, First 10 rows and more.
L. Liu, Y. Wang, A unified approach to polynomial sequences with only real zeros, arXiv:math/0509207v5 [math.CO], 2005-2006.
FORMULA
G(k, x) = Sum_{p=0..k} S2(k, p)*((2*p)!/p!)*x^p/(1-4*x)^(p+1), k >= 0 (here k >= 1), with the Stirling2 triangle S2(k, p):=A048993(k, p). (Proof from the product of the o.g.f.s of the two convoluted sequences and the normal ordering (x^d_x)^k = Sum_{p=0..k} S2(k, p)*x^p*d_x^p, with the derivative operator d_x.)
a(k,m) = [x^m]P(k, x) = [x^m] ((1-4*x)^(k+1))*G(k,x)/(2*x), k>=1, m=0,1,...,k-1.
For the triangle coefficients the following relation holds: T(n,m) = (m+1)*T(n-1,m) + (4*n-4*m-2)*T(n-1,m-1) with T(n,m=0) = 1 and T(n,m=n-1) = 2^(n-1), n >= 1 and 0 <= m <= n-1. - Johannes W. Meijer, Feb 20 2009
From Peter Bala, Jan 18 2018: (Start)
(x*d/dx)^n (1/(sqrt(1 - 4*x)) = 2*x*P(n,x)/sqrt(1 - 4*x)^(n+1/2) for n >= 1.
x*P(n,x)/(1 - 4*x)^(n+1/2) = (1/2)*Sum_{k >= 1} binomial(2*k,k)* k^n*x^k for n >= 1.
P(n+1,x) = ((4*n - 2)*x + 1)*P(n,x) - x*(4*x - 1)*d/dx(P(n,x)).
Hence the polynomial P(n,x) has all real zeros by Liu et al., Theorem 1.1, Corollary 1.2. (End)
EXAMPLE
Triangle starts:
[1]
[1, 2]
[1, 10, 4]
[1, 30, 72, 8]
[1, 74, 516, 464, 16]
[1, 166, 2584, 7016, 2864, 32]
[1, 354, 10740, 64240, 84480, 17376, 64]
[1, 734, 40008, 450280, 1321760, 949056, 104704, 128]
...
P(3,x) = 1+10*x+4*x^2.
G(3,x) = 2*x*(1+10*x+4*x^2)/(1-4*x)^4.
MAPLE
A142963 := proc(n, m): if n=m+1 then 2^(n-1); elif m=0 then 1 ; elif m<0 or m>n-1 then 0; else (m+1)*procname(n-1, m)+(4*n-4*m-2)*procname(n-1, m-1); end if; end proc: seq(seq(A142963(n, m), m=0..n-1), n=1..9); # Johannes W. Meijer, Sep 28 2011
# Alternatively (assumes offset 0):
p := (n, x) -> (1/2)*add(Stirling2(n+1, k+1)*x^k*(1-4*x)^(n-k)*(2*k+2)!/(k+1)!, k=0..n): for n from 0 to 7 do [n], PolynomialTools:-CoefficientList(p(n, x), x) od;
# Peter Luschny, Jun 18 2017
MATHEMATICA
t[_, 0] = 1; t[n_, m_] /; m == n-1 := 2^m; t[n_, m_] := (m+1)*t[n-1, m] + (4*n-4*m-2)*t[n-1, m-1]; Table[t[n, m], {n, 1, 10}, {m, 0, n-1}] // Flatten (* Jean-François Alcover, Jun 21 2013, after Johannes W. Meijer *)
CROSSREFS
Left hand column sequences 2*A142964, 4*A142965, 8*A142966, 16*A142968.
Row sums A142967.
From Johannes W. Meijer, Feb 20 2009: (Start)
A156919 and this sequence can be mapped onto A156920.
Right hand column sequences 2^n*A000340, 2^n*A156922, 2^n*A156923, 2^n*A156924. (End)
Sequence in context: A332080 A225911 A163235 * A099755 A202483 A110682
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Sep 15 2008
EXTENSIONS
Minor edits by Johannes W. Meijer, Sep 28 2011
A more precise name by Peter Luschny, Jun 18 2017
Name reformulated with offset corrected, edited by Wolfdieter Lang, Aug 23 2019
STATUS
approved