login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140831
Numbers in whose canonical prime factorization the powers of the primes do not form an increasing sequence.
1
12, 24, 40, 45, 48, 56, 60, 63, 80, 84, 90, 96, 112, 120, 126, 132, 135, 144, 156, 160, 168, 175, 176, 180, 189, 192, 204, 208, 224, 228, 240, 252, 264, 270, 275, 276, 280, 288, 297, 300, 312, 315, 320, 325, 336, 348, 350, 351, 352, 360, 372, 378, 384, 405
OFFSET
1,1
COMMENTS
Previous name was: Let p^b(n,p) be the largest power of the prime p that divides n. The integer n is included if the list of p^b(n,p)'s, where each p is a distinct prime divisor of n, arranged by size of each p^b(n,p) is not in the same order as the list of p^b(n,p)'s arranged by size of each prime p.
This sequence contains no squarefree integers.
90 is the smallest integer in this sequence but not in sequence A126855.
The number of terms < 10^n: 0, 12, 151, 1575, 16154, 161630, 1617052, ..., . - Robert G. Wilson v, Aug 31 2008
If k is in the sequence, then all powers of k are in the sequence. - Mike Jones, Jun 16 2022
If k is in the sequence then k*A020639(k)^m is in the sequence for m >= 0. - David A. Corneth, Jun 16 2022
Conjecture: There are infinitely many terms k such that k+1 is also a term. - Mike Jones, Jun 18 2022
LINKS
EXAMPLE
The prime factorization of 90 is, when arranged by size of the distinct primes, 2^1 * 3^2 * 5^1. Since 3^2 is > 5^1, even though 5 > 3, 90 is in the sequence.
MATHEMATICA
fQ[n_] := Block[{f = First@# ^ Last@# & /@ FactorInteger@n}, f != Sort@f]; Select[ Range@ 407, fQ@# &] (* Robert G. Wilson v, Aug 31 2008 *)
PROG
(PARI) is(n) = { my(f = factor(n)); for(i = 1, #f~-1, if(f[i, 1]^f[i, 2] > f[i+1, 1]^f[i+1, 2], return(1) ) ); 0 } \\ David A. Corneth, Jun 16 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Leroy Quet, Jul 18 2008
EXTENSIONS
More terms from Robert G. Wilson v, Aug 31 2008
Simpler name from Mike Jones, Jun 15 2022
STATUS
approved