login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140833
Sum of Fibonacci numbers between F(-n)....F(n), inclusive.
1
0, 2, 2, 6, 6, 16, 16, 42, 42, 110, 110, 288, 288, 754, 754, 1974, 1974, 5168, 5168, 13530, 13530, 35422, 35422, 92736, 92736, 242786, 242786, 635622, 635622, 1664080, 1664080, 4356618, 4356618, 11405774, 11405774, 29860704, 29860704, 78176338, 78176338
OFFSET
0,2
COMMENTS
a(2n)/a(2n+1) converges to ((((sqrt 5)-1)/2)^2).
FORMULA
a(2n-1) = a(2n).
a(n) = 3*a(n-2) - a(n-4).
G.f.: 2x(1+x)/((1-x-x^2)(1+x-x^2)). a(n)=2*A094966(n) = A000045(n+2)-A039834(n-1). - R. J. Mathar, Oct 30 2008
a(n) = -a(-1-n) for all n in Z. - Michael Somos, Nov 01 2016
a(n) = 2*A000045(ceiling(n/2)*2). - Alois P. Heinz, Nov 02 2016
EXAMPLE
a(3) = 2+(-1)+1+0+1+1+2=6.
G.f. = 2*x + 2*x^2 + 6*x^3 + 6*x^4 + 16*x^5 + 16*x^6 + 42*x^7 + ...
MAPLE
a:= n-> 2*(<<0|1>, <1|1>>^(ceil(n/2)*2))[1, 2]:
seq(a(n), n=0..40); # Alois P. Heinz, Nov 02 2016
MATHEMATICA
a[ n_] := 2 Fibonacci[ n + Mod[n, 2]]; (* Michael Somos, Nov 01 2016 *)
LinearRecurrence[{0, 3, 0, -1}, {0, 2, 2, 6}, 50] (* Harvey P. Dale, Aug 07 2022 *)
PROG
(PARI) {a(n) = 2 * fibonacci(n + n%2)}; /* Michael Somos, Nov 01 2016 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Carey W. Strutz (cwstrutz(AT)excite.com), Jul 18 2008
EXTENSIONS
a(21)-a(22) corrected by Matthew House, Nov 01 2016
STATUS
approved