OFFSET
0,5
COMMENTS
From Gary W. Adamson, Mar 14 2009: (Start)
where M = a 5 X 5 matrix [1,1,0,0,0; 0,1,1,0,0; 0,0,1,1,0; 0,0,0,1,1; 1,0,0,0,1].
Sum of terms = 2^n. Example: M^6 * [1,0,0,0,0] = [7, 15, 20, 15, 7]; sum = 64. (End)
REFERENCES
A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..3000
Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017.
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,2).
FORMULA
G.f.: x^3*(x-1)/((2*x-1)*(x^4-2*x^3+4*x^2-3*x+1)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009
a(n) = round((2/5)*(2^(n-1) + phi^n*cos(Pi*(n-6)/5))), where phi is the golden ratio and round(x) is the integer nearest to x. - Vladimir Shevelev, Jun 28 2017
a(n+m) = a(n)*H_1(m) + H_3(n)*H_2(m) + H_2(n)*H_3(m) + H_1(n)*a(m) + H_5(n)*H_5(m), where H_1=A139398, H_2=A133476, H_3=A139714, H_5=A139761. - Vladimir Shevelev, Jun 28 2017
MAPLE
a:= n-> (Matrix(5, (i, j)-> `if`((j-i) mod 5 in [0, 1], 1, 0))^n)[3, 1]:
seq(a(n), n=0..35); # Alois P. Heinz, Dec 21 2015
MATHEMATICA
CoefficientList[Series[x^3 (x - 1)/((2 x - 1) (x^4 - 2 x^3 + 4 x^2 - 3 x + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 21 2015 *)
PROG
(PARI) a(n) = sum(k=0, n\5, binomial(n, 5*k+3)); \\ Michel Marcus, Dec 21 2015
(PARI) x='x+O('x^100); concat([0, 0, 0], Vec(x^3*(x-1)/((2*x-1)*(x^4-2*x^3+4*x^2-3*x+1)))) \\ Altug Alkan, Dec 21 2015
(Magma) I:=[0, 0, 0, 1, 4]; [n le 5 select I[n] else 5*Self(n-1)- 10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+2*Self(n-5): n in [1..40]]; // Vincenzo Librandi, Dec 21 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 13 2008
STATUS
approved