login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138949
Expansion of (3 * phi(q^3)^2 - phi(q)^2) / 2 in powers of q where phi() is a Ramanujan theta function.
8
1, -2, -2, 6, -2, -4, 6, 0, -2, -2, -4, 0, 6, -4, 0, 12, -2, -4, -2, 0, -4, 0, 0, 0, 6, -6, -4, 6, 0, -4, 12, 0, -2, 0, -4, 0, -2, -4, 0, 12, -4, -4, 0, 0, 0, -4, 0, 0, 6, -2, -6, 12, -4, -4, 6, 0, 0, 0, -4, 0, 12, -4, 0, 0, -2, -8, 0, 0, -4, 0, 0, 0, -2, -4
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
L.-C. Shen, On the Modular Equations of Degree 3, Proc. Amer. Math. Soc. 122 (1994), no. 4, 1101-1114. See p. 1108, Eq. (3.20).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(-q) * phi(-q^2) * chi(q^3) / chi(-q^3) in powers of q where phi(), chi() are Ramanujan theta functions.
Expansion of eta(q)^2 * eta(q^2) * eta(q^6)^3 / (eta(q^3)^2 * eta(q^4) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ -2, -3, 0, -2, -2, -4, -2, -2, 0, -3, -2, -2, ...].
Moebius transform is period 12 sequence [ -2, 0, 8, 0, -2, 0, 2, 0, -8, 0, 2, 0, ...].
a(n) = -2 * b(n) where b() is multiplicative and b(2^e) = 1, b(3^e) = -1 + 2 * (-1)^e, b(p^e) = e+1 if p == 1, 5 (mod 12), b(p^e) = (1 + (-1)^e) / 2 if p == 7, 11 (mod 12).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 12 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A113446.
G.f.: Product_{k>0} (1 - x^(2*k))^2 * (1 - x^k + x^(2*k))^2 / ((1 + x^(2*k))^2 * (1 - x^(2*k) + x^(4*k))).
G.f.: 1 - 2 * Sum_{k>0} (f(3*k - 2) + f(3*k - 1) - 2 * f(3*k)) where f(n) := x^n / (1 + x^(2*n)).
a(12*n + 7) = a(12*n + 11) = 0. a(2*n) = a(n).
a(n) = -2 * A138950(n) unless n=0. a(2*n + 1) = -2 * A116604(n).
a(3*n + 1) = A122865(n). a(3*n + 2) = -2 * A122856(n). a(4*n + 1) = -2 * A008441(n).
EXAMPLE
G.f. = 1 - 2*q - 2*q^2 + 6*q^3 - 2*q^4 - 4*q^5 + 6*q^6 - 2*q^8 - 2*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (3 EllipticTheta[ 3, 0, q^3]^2 - EllipticTheta[ 3, 0, q]^2) / 2, {q, 0, n}]; (* Michael Somos, Sep 07 2015 *)
a[ n_] := If[ n < 1, Boole[n == 0], -2 DivisorSum[ n, KroneckerSymbol[ -4, n/#] {1, 1, -2}[[Mod[#, 3, 1]]] &]]; (* Michael Somos, Sep 07 2015 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 2 * sumdiv(n, d, kronecker(-4, n/d) * [2, -1, -1][d%3 + 1]))};
(PARI) {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); -2 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 1, p==3, -1 + 2 * (-1)^e, p%12 < 6, e+1, 1-e%2))) };
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^2 + A) * eta(x^6 + A)^3 / (eta(x^3 + A)^2 * eta(x^4 + A) * eta(x^12 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Apr 03 2008
STATUS
approved