login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113446
Expansion of (phi(q)^2 - phi(q^3)^2) / 4 in powers of q where phi() is a Ramanujan theta function.
11
1, 1, -1, 1, 2, -1, 0, 1, 1, 2, 0, -1, 2, 0, -2, 1, 2, 1, 0, 2, 0, 0, 0, -1, 3, 2, -1, 0, 2, -2, 0, 1, 0, 2, 0, 1, 2, 0, -2, 2, 2, 0, 0, 0, 2, 0, 0, -1, 1, 3, -2, 2, 2, -1, 0, 0, 0, 2, 0, -2, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 1, 2, 2, -3, 0, 0, -2, 0, 2, 1, 2, 0, 0, 4, 0, -2, 0, 2, 2, 0, 0, 0, 0, 0, -1, 2, 1, 0, 3, 2, -2, 0, 2, 0
OFFSET
1,5
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of (eta(q^2)^3 * eta(q^6) * eta(q^12)^2) / (eta(q) * eta(q^3) * eta(q^4)^2) in powers of q.
Euler transform of period 12 sequence [1, -2, 2, 0, 1, -2, 1, 0, 2, -2, 1, -2, ...].
Moebius transform is period 12 sequence [1, 0, -2, 0, 1, 0, -1, 0, 2, 0, -1, 0, ...].
a(n) is multiplicative and a(2^e) = 1, a(3^e) = (-1)^e, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e)/2 if p == 3 (mod 4).
G.f.: ((Sum_{k} x^(k^2))^2 - (Sum_{k} x^(3*k^2))^2) / 4.
G.f.: Sum_{k>0} x^(3*k-1) / (1 + x^(6*k-2)) + x^(3*k-2)/(1 + x^(6*k-4)).
G.f.: Sum_{k>0} x^k * (1 - x^(2*k))^2 / (1 + x^(6*k)).
G.f.: x * Product_{k>0} (1 - x^k)^2 * (1 + x^k)^3 * (1 + x^(3*k)) * (1 + x^(4*k) + x^(8*k))^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A138949.
a(n) = (-1)^e * A035154(n) where 3^e is the highest power of 3 dividing n.
a(4*n + 1) = A008441(n).
Expansion of q * f(-q, -q^5) * f(q, q^5)^2 / phi(-q^3) in powers of q where phi(), f(,) are Ramanujan theta functions. - Michael Somos, Jan 31 2015
Expansion of q * (psi(q^3)^3 / psi(q)) * (phi(q) / phi(q^3)) in powers of q where phi(), psi() are Ramanujan theta functions.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/6 (A019673). - Amiram Eldar, Nov 24 2023
EXAMPLE
G.f. = q + q^2 - q^3 + q^4 + 2*q^5 - q^6 + q^8 + q^9 + 2*q^10 - q^12 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, (-1)^IntegerExponent[ n, 3] Sum[ KroneckerSymbol[ -36, d], { d, Divisors[ n]}]]; (* Michael Somos, Jan 31 2015 *)
a[ n_] := SeriesCoefficient[ (1/4) EllipticTheta[ 2, 0, q^(3/2)]^3 / EllipticTheta[ 2, 0, q^(1/2)] (EllipticTheta[ 3, 0, q] / EllipticTheta[ 3, 0, q^3]), {q, 0, n}]; (* Michael Somos, Jan 31 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, (-1)^valuation(n, 3) * sumdiv(n, d, kronecker(-36, d)))};
(PARI) {a(n) = if( n<1, 0, direuler(p=2, n, if( p==3, 1 / (1 + X), 1 / (1 - X) / (1 - kronecker(-36, p) * X)))[n])};
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^6 + A) * eta(x^12 + A)^2 / (eta(x + A) * eta(x^3 + A) * eta(x^4 + A)^2), n))};
(Magma) A := Basis( ModularForms( Gamma1(12), 1), 106); A[2] + A[3] - A[4] + A[5]; /* Michael Somos, Jan 31 2015 */
KEYWORD
sign,easy,mult
AUTHOR
Michael Somos, Nov 02 2005
STATUS
approved