OFFSET
1,2
COMMENTS
Row sums of the triangles A135010, A138121, A138151 and others related to the section model of partitions (see A135010 and A138121).
From Omar E. Pol, Jan 20 2021: (Start)
a(n) is also the sum of all divisors of all terms of n-th row of A336811. These divisors are also all parts in the last section of the set of partitions of n. - Omar E. Pol, Jul 27 2021
Row sums of A336812. - Omar E. Pol, Aug 03 2021
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
FORMULA
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi/(12*sqrt(2*n)) * (1 - (72 + 13*Pi^2) / (24*Pi*sqrt(6*n)) + (7/12 + 3/(2*Pi^2) + 217*Pi^2/6912)/n - (15*sqrt(3/2)/(16*Pi) + 115*Pi/(288*sqrt(6)) + 4069*Pi^3/(497664*sqrt(6)))/n^(3/2)). - Vaclav Kotesovec, Oct 21 2016, extended Jul 06 2019
G.f.: x*(1 - x)*f'(x), where f(x) = Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Apr 13 2017
EXAMPLE
a(6)=31 because the parts of the last section of the set of partitions of 6 are (6), (3,3), (4,2), (2,2,2), (1), (1), (1), (1), (1), (1), (1), so the sum is a(6) = 6 + 3 + 3 + 4 + 2 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 31.
From Omar E. Pol, Aug 13 2013: (Start)
Illustration of initial terms:
. _ _ _ _ _ _
. |_ _ _ _ _ _|
. |_ _ _|_ _ _|
. |_ _ _ _|_ _|
. _ _ _ _ _ |_ _|_ _|_ _|
. |_ _ _ _ _| |_|
. _ _ _ _ |_ _ _|_ _| |_|
. |_ _ _ _| |_| |_|
. _ _ _ |_ _|_ _| |_| |_|
. _ _ |_ _ _| |_| |_| |_|
. _ |_ _| |_| |_| |_| |_|
. |_| |_| |_| |_| |_| |_|
.
. 1 3 5 11 15 31
.
(End)
On the other hand for n = 6 the 6th row of triangle A336811 is [6, 4, 3, 2, 2, 1, 1] and the sum of all divisors of these terms is [1 + 2 + 3 + 6] + [1 + 2 + 4] + [1 + 3] + [1 + 2] + [1 + 2] + [1] + [1] = 31, so a(6) = 31. - Omar E. Pol, Jul 27 2021
MAPLE
MATHEMATICA
Table[PartitionsP[n]*n - PartitionsP[n-1]*(n-1), {n, 1, 50}] (* Vaclav Kotesovec, Oct 21 2016 *)
PROG
(PARI) for(n=1, 50, print1(numbpart(n)*n - numbpart(n - 1)*(n - 1), ", ")) \\ Indranil Ghosh, Mar 19 2017
(Python)
from sympy.ntheory import npartitions
print([npartitions(n)*n - npartitions(n - 1)*(n - 1) for n in range(1, 51)]) # Indranil Ghosh, Mar 19 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Apr 30 2008
EXTENSIONS
a(34) corrected by R. J. Mathar, Jan 27 2011
STATUS
approved