login
A138760
Numbers n such that n^4 is a sum of 4th powers of four nonzero integers whose sum is n.
1
5491, 10982, 16473, 21964, 27455, 32946, 38437, 43928, 49419, 51361, 54910, 60401, 65892, 71383, 76874, 82365, 87856, 93347, 98838, 102722, 104329, 109820, 115311, 120802, 126293, 131784, 137275, 142766, 148257, 153748, 154083, 159239, 164730
OFFSET
1,1
COMMENTS
Any multiple of a member is also a member. A member that is not a multiple of another member is called primitive. Using elliptic curves, Jacobi and Madden prove that there are infinitely many primitive members. According to them, the only primitive members less than 222,000 are 5491 (due to Brudno) and 51361 (due to Wroblewski).
LINKS
Simcha Brudno, A further example of A^4 + B^4 + C^4 + D^4 = E^4, Proc. Camb. Phil. Soc. 60 (1964) 1027-1028.
Noam Elkies, On A^4 + B^4 + C^4 = D^4, Math. Comp. 51 (1988) 825-835.
Lee W. Jacobi and Daniel J. Madden, On a^4 + b^4 + c^4 + d^4 = (a+b+c+d)^4, Amer. Math. Monthly 115 (2008) 220-236.
Lee W. Jacobi and Daniel J. Madden, On a^4 + b^4 + c^4 + d^4 = (a+b+c+d)^4
Eric Weisstein's MathWorld, Diophantine equation - 4th powers
FORMULA
n^4 = a^4 + b^4 + c^4 + d^4 = (a+b+c+d)^4 with abcd =/= 0.
EXAMPLE
5491^4 = 5400^4 + (-2634)^4 + 1770^4 + 955^4 and 5491 = 5400 - 2634 + 1770 + 955, so 5491 is a member (Brudno).
51361^4 = 48150^4 + (-31764)^4 + 27385^4 + 7590^4 and 51361 = 48150 - 31764 + 27385 + 7590, so 51361 is a member (Wroblewski).
1347505009^4 = 1338058950^4 + (-89913570)^4 + 504106884^4 + (-404747255)^4, and 1347505009 = 1338058950 - 89913570 + 504106884 - 404747255, so 1347505009 is a member (Jacobi-Madden).
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Mar 28 2008
STATUS
approved