login
A096739
Numbers k such that k^4 can be written as a sum of four distinct positive 4th powers.
6
353, 651, 706, 1059, 1302, 1412, 1765, 1953, 2118, 2471, 2487, 2501, 2604, 2824, 2829, 3177, 3255, 3530, 3723, 3883, 3906, 3973, 4236, 4267, 4333, 4449, 4557, 4589, 4942, 4949, 4974, 5002, 5208, 5281, 5295, 5463, 5491, 5543, 5648, 5658, 5729, 5859
OFFSET
1,1
COMMENTS
From David Wasserman, Nov 16 2007: (Start)
Every multiple of a term is a term.
Is this sequence the same as A003294? (End)
REFERENCES
D. Wells, Curious and interesting numbers, Penguin Books, p. 139.
LINKS
K. Rose and S. Brudno, More about four biquadrates equal one biquadrate, Math. Comp., 27 (1973), 491-494.
Eric Weisstein's World of Mathematics, Diophantine Equation 4th Powers.
EXAMPLE
Example solutions:
353^4 = 30^4 + 120^4 + 272^4 + 315^4;
706^4 = 60^4 + 240^4 + 544^4 + 630^4;
1059^4 = 90^4 + 360^4 + 816^4 + 945^4;
1302^4 = 480^4 + 680^4 + 860^4 + 1198^4;
1412^4 = 120^4 + 480^4 + 1088^4 + 1260^4;
3723^4 = 2270^4 + 2345^4 + 2460^4 + 3152^4.
CROSSREFS
Sequence in context: A058375 A059635 A003294 * A039664 A054825 A304385
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, May 30 2002
EXTENSIONS
Corrected by Bo Asklund (boa(AT)mensa.se), Nov 05 2004
Corrected and extended by David Wasserman, Nov 16 2007
STATUS
approved