login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137925
a(n) = the largest divisor of n that is coprime to A002808(n). (A002808(n) = the n-th composite.)
2
1, 1, 3, 4, 1, 1, 1, 8, 9, 5, 11, 4, 13, 7, 3, 1, 17, 9, 19, 5, 7, 11, 23, 1, 25, 2, 27, 1, 29, 2, 31, 1, 33, 17, 35, 9, 37, 38, 39, 40, 41, 7, 43, 44, 45, 46, 47, 3, 49, 1, 17, 13, 53, 27, 5, 7, 57, 58, 59, 5, 61, 31, 7, 1, 13, 66, 67, 68, 69, 14, 71, 9, 73, 37, 25, 19, 11, 39, 79, 1, 1
OFFSET
1,3
LINKS
EXAMPLE
The 12th composite is 21. The divisors of 12 are 1,2,3,4,6,12. The divisors of 12 that are coprime to 21 are 1,2,4. 4 is the largest of these, so a(12) = 4.
MAPLE
A002808 := proc(n) option remember ; local a; if n = 1 then 4; else for a from A002808(n-1)+1 do if not isprime(a) then RETURN(a) ; fi ; od: fi ; end: A137925 := proc(n) local dvs, d, a002808 ; a002808 := A002808(n) ; dvs := sort(convert(numtheory[divisors](n), list), `>`) ; for d in dvs do if gcd(d, a002808) = 1 then RETURN(d) ; fi ; od: end: seq(A137925(n), n=1..120) ; # R. J. Mathar, Apr 17 2008
MATHEMATICA
ldc[{n_, x_}]:=Module[{divs=Divisors[n]}, Max[Select[divs, CoprimeQ[ #, x]&]]]; Module[{nn=120, c, len}, c=Select[Range[nn], CompositeQ]; len=Length[c]; ldc/@Thread[{Range[len], c}]] (* Harvey P. Dale, May 24 2017 *)
CROSSREFS
Cf. A137924.
Sequence in context: A058022 A215202 A139344 * A171528 A299924 A131107
KEYWORD
nonn
AUTHOR
Leroy Quet, Feb 23 2008
EXTENSIONS
More terms from R. J. Mathar, Apr 17 2008
STATUS
approved