OFFSET
2,1
COMMENTS
For the second of these numbers see A137800. Sequences have offset 2 (prime(2) = 3) because prime(1) = 2 is never the largest prime factor for two numbers in a run of composites.
Suggested by Puzzle 430, Carlos Rivera's The Prime Puzzles & Problems Connection.
EXAMPLE
The composites between 23 and 29 form the first run containing two numbers with largest prime factor prime(2) = 3, viz. 24 = 2*2*2*3 and 27 = 3*3*3. Hence a(2) = 24.
The composites between 2313679 and 2313767 form the first run containing two numbers with largest prime factor prime(17) = 59, viz. 2313685 = 5*11*23*31*59 and 2313744 = 2*2*2*2*3*19*43*59. Hence a(17) = 2313685.
PROG
(UBASIC) 10 'puzzle 430 (duplicate prime factors) 20 N=2313680 30 A=1:S=N\2:print N; 40 B=N\A 50 if B*A=N and B=prmdiv(B) and B<=S then print B; :goto 80 60 A=A+1 70 if A<=N\2 then 40 80 C=C+1:print C: if B=59 then T=T+1 81 if N=2313700 then stop 90 if T=2 then T=0:stop 100 N=N+1: if N=prmdiv(N) then C=0:T=0:stop:print:goto 100:else 30
(PARI) {m=30; v=vector(m); w=v; p=3; c=0; while(c<m, b=p; t=0; until(t, a=b; f=factor(a); b=a+p; g=factor(b); t=nextprime(a+1)>b&&f[matsize(f)[1], 1]<=p&&g[matsize(g)[1], 1]<=p); c++; v[c]=a; w[c]=b; p=nextprime(p+1)); print("A137799:"); print(v); print("A137800:"); print(w)} /* Klaus Brockhaus, Feb 15 2008 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Enoch Haga, Feb 11 2008
EXTENSIONS
Edited and a(18) through a(31) added by Klaus Brockhaus, Feb 15 2008
STATUS
approved