login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136097
a(n) = A135951(n) /[(2^(n+1)-1) * 2^(n*(n-1)/2)].
1
1, -1, 5, -93, 6477, -1733677, 1816333805, -7526310334829, 124031223014725741, -8152285307423733458541, 2140200604371078953284092525, -2245805993494514875022552272042605, 9423041917569791458584837551185555483245
OFFSET
0,3
COMMENTS
A135951 is the central terms of A135950; A135950 is the matrix inverse of A022166; A022166 is the triangle of Gaussian binomial coefficients [n,k] for q = 2.
FORMULA
Conjecture: the n-th central term of the matrix inverse of the triangle of Gaussian binomial coefficients in q is divisible by [(q^(n+1)-1)/(q-1) * q^(n*(n-1)/2)] for n>=0 and integer q > 1.
a(n) = (-1)^n * A015030(n) where A015030 is 2-Catalan numbers. - Michael Somos, Jan 10 2023
MATHEMATICA
Table[(-1)^n QBinomial[2n, n, 2]/(2^(n+1) - 1), {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
PROG
(PARI) a(n)=local(q=2, A=matrix(2*n+1, 2*n+1, n, k, if(n>=k, if(n==1 || k==1, 1, prod(j=n-k+1, n-1, 1-q^j)/prod(j=1, k-1, 1-q^j))))^-1); A[2*n+1, n+1]/( (q^(n+1)-1)/(q-1) * q^(n*(n-1)/2) )
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Dec 13 2007
STATUS
approved