login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015030
q-Catalan numbers (binomial version) for q=2.
4
1, 1, 5, 93, 6477, 1733677, 1816333805, 7526310334829, 124031223014725741, 8152285307423733458541, 2140200604371078953284092525, 2245805993494514875022552272042605, 9423041917569791458584837551185555483245, 158121354267437848361217045222877873550507035245
OFFSET
0,3
LINKS
FORMULA
a(n) = binomial(2*n, n, q)/(n+1)_q, where binomial(n,m,q) is the q-binomial coefficient, with q=2.
a(n) = ((1-q)/(1-q^(n+1)))*Product_{k=0..(n-1)} (1-q^(2*n-k))/(1-q^(k+1)), with q=2. - G. C. Greubel, Nov 11 2018
a(n) ~ c * 2^(n^2-n-1), where c = 3.462746619455... = A065446. - Vladimir Reshetnikov, Sep 26 2021
a(n) = (-1)^n * A136097(n). - Michael Somos, Jan 10 2023
a(n) = Product_{1 <= i <= j <= n-1} (2^(i+j+2) - 1)/(2^(i+j) - 1). - Peter Bala, Feb 24 2023
MATHEMATICA
Table[QBinomial[2n, n, 2]/(2^(n+1) - 1), {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
PROG
(PARI) q=2; for(n=0, 20, print1(((1-q)/(1-q^(n+1)))*prod(k=0, n-1, (1-q^(2*n-k))/(1-q^(k+1))), ", ")) \\ G. C. Greubel, Nov 11 2018
(Magma) q:=2; [1] cat [((1-q)/(1-q^(n+1)))*(&*[(1-q^(2*n-k))/(1-q^(k+1)): k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 11 2018
(Sage)
from sage.combinat.q_analogues import q_catalan_number
[q_catalan_number(n, 2) for n in range(20)] # G. C. Greubel, Nov 21 2018
CROSSREFS
q-Catalan numbers for q = 3..12 and q = -2..-11: A015033 - A015035, A015037 - A015042, A015055 - A015058, A015060 - A015062, A015072, A015077 - A015079.
Sequence in context: A209471 A012784 A136097 * A270071 A047052 A049662
KEYWORD
nonn,easy
STATUS
approved