login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136018
Triangle read by rows: r(n,k) = g(n,n-k), where g(n,k) is the number of ideals of size k in a garland (or double fence) of order n (see A137278).
1
1, 1, 1, 1, 2, 1, 3, 3, 3, 1, 7, 6, 6, 4, 1, 15, 14, 12, 10, 5, 1, 33, 32, 27, 22, 15, 6, 1, 75, 72, 63, 50, 37, 21, 7, 1, 171, 164, 146, 118, 88, 58, 28, 8, 1, 391, 377, 338, 280, 212, 147, 86, 36, 9, 1, 899, 870, 786, 662, 514, 366, 234, 122, 45, 10, 1, 2077, 2014, 1834, 1564
OFFSET
0,5
COMMENTS
Row n has n+1 terms.
REFERENCES
T. S. Blyth, J. C. Varlet, Ockham algebras, Oxford Science Pub. 1994.
E. Munarini, Enumeration of order ideals of a garland, Ars Combin. 76 (2005), 185--192.
LINKS
Emanuele Munarini, Mar 21 2008, Table of n, a(n) for n = 0..495
FORMULA
Recurrence: r(n+3,k+1) = r(n+2,k) + r(n+2,k+1) + r(n+2,k+2) - r(n+1,k+1) - r(n,k+1).
Riordan matrix: R = ( g(x), f(x) ), where g(x) = ( 1 - x^2 )/sqrt( 1 - 2 x - x^2 - x^4 + 2 x^5 + x^6 ) f(x) = ( 1 - x + x^2 + x^3 - sqrt( 1 - 2 x - x^2 - 3 x^4 + 2 x^5 + x^6 ) )/(2x) g(x) is the generating series for the central ideals c(n) = g(2n,n). f(x)/x is the generating series for sequence A004149.
CROSSREFS
Sequence in context: A178244 A227532 A152534 * A138022 A113278 A132382
KEYWORD
easy,nonn,tabl,look
AUTHOR
Emanuele Munarini, Mar 21 2008
STATUS
approved