login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136015
Prime numbers p such that 2*p+1, p*(p + 1) - 1 and p*(p + 1) + 1 are also primes.
1
2, 3, 5, 41, 89, 131, 743, 761, 3449, 6173, 9059, 10781, 11549, 13553, 14939, 15569, 16301, 27809, 33479, 54773, 55439, 57149, 70901, 71849, 76091, 97523, 103391, 103643, 104369, 110543, 114269, 115499, 140111, 141539, 153509, 161033, 162251
OFFSET
1,1
LINKS
EXAMPLE
3 is a term since it is a prime, 2 * 3 + 1 = 7 is a prime, 3 * (3 + 1) = 12, and (11, 13) are twin primes.
MAPLE
a:=proc(n) if isprime(n)=true and isprime(2*n+1)=true and isprime(n*(n+1)-1)= true and isprime(n*(n+1)+1)=true then n else end if end proc: seq(a(n), n=1.. 150000); # Emeric Deutsch, Apr 01 2008
MATHEMATICA
a = ""; For[i = 1, i < 10^5, j = i + 1; s = i + j; m = i*j; p1 = m - 1; p2 = m + 1; If[PrimeQ[i] && PrimeQ[s] && PrimeQ[p1] && PrimeQ[p2], a = a <> ToString[i] <> ", "]; i++ ]; Print[a <> ".."]
Select[Prime[Range[100000]], PrimeQ[2# + 1] && PrimeQ[ #*(# + 1) - 1] && PrimeQ[ #*(# + 1) + 1] &] (* Stefan Steinerberger, Mar 24 2008 *)
CROSSREFS
Sequence in context: A235681 A322748 A224781 * A106713 A106820 A362957
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited with more terms by Stefan Steinerberger and Emeric Deutsch, Mar 24 2008
STATUS
approved