login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135849
a(n) is the ratio of the sum of the bends (curvatures) of the circles in the n-th generation of an Apollonian packing to the sum of the bends in the initial four-circle configuration.
8
1, 5, 39, 297, 2259, 17181, 130671, 993825, 7558587, 57487221, 437222007, 3325314393, 25290849123, 192350849805, 1462934251071, 11126421459153, 84622568920011, 643601286982629, 4894942589100999, 37228736851860105, 283145067047577843, 2153474325825042429
OFFSET
1,2
COMMENTS
These ratios are independent of the starting configuration.
For more comments, references and links, see A189226.
LINKS
J. C. Lagarias, C. L. Mallows and Allan Wilks, Beyond the Descartes Circle Theorem, Amer. Math. Monthly, 109 (2002), 338-361.
C. L. Mallows, Growing Apollonian Packings, J. Integer Sequences, 12 (2009), article 09.2.1, page 3.
FORMULA
For n >= 4, a(n) = 8*a(n-1) - 3*a(n-2).
For n>2, [a(n+2), a(n+3)] = the 2 X 2 matrix [0,1; -3,8]^n * [5,39]. Example: [0,1; -3,8]^3 * [5,39] = [a(5), a(6)] = [2259, 17181]. - Gary W. Adamson, Mar 09 2008 (typo corrected by Jonathan Sondow, Dec 24 2012)
a(n) = floor(C * A138264(n)), where C = 1.057097576... = (1/2)*((1/9) + sqrt((1/81) + 4)). Example: a(7) = 130671 = floor(C * A138264(7)) = floor(C * 123613). A135849(n)/A138264(n) tends to C. - Gary W. Adamson, Mar 09 2008
O.g.f.: 2*x/3 +7/9 +(59*x-7)/(9*(1-8*x+3*x^2)). - R. J. Mathar, Apr 24 2008
a(n) = 31*sqrt(13)*(A^n - B^n)/234 - 7*(A^n + B^n)/18 for n>1 where A=3/(4-sqrt(13)) and B=3/(4+sqrt(13)). - R. J. Mathar, Apr 24 2008
EXAMPLE
Starting with the configuration with bends (-1,2,2,3) with sum(bends) = 6, the next generation contains four circles with bends 3,6,6,15. The sum is 30 = 6*a(2). The third generation has 12 circles with sum(bends) = 234 = 6*a(3).
MATHEMATICA
CoefficientList[Series[(2 z^2 - 3 z + 1)/(3 z^2 - 8 z + 1), {z, 0, 100}], z] (* and *) LinearRecurrence[{8, -3}, {1, 5, 39}, 100] (* Vladimir Joseph Stephan Orlovsky, Jul 03 2011 *)
PROG
(PARI) Vec((2*x^3 - 3*x^2 + x)/(3*x^2 - 8*x + 1)+O(x^99)) \\ Charles R Greathouse IV, Jul 03, 2011
(Magma) I:=[1, 5, 39]; [n le 3 select I[n] else 8*Self(n-1) - 3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 25 2012
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Colin Mallows, Mar 06 2008
STATUS
approved