login
A135034
Positive integers n repeated 2n-1 times, with a leading a(0) = 0. Also: ceiling of square root of n.
2
0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
OFFSET
0,3
LINKS
FORMULA
a(n) = ceiling(sqrt(n)).
a(n) = A003059(n), for n >= 1. - R. J. Mathar, Jun 18 2008
EXAMPLE
a(1) = ceiling(sqrt(1)) = 1
a(6) = ceiling(sqrt(6)) = 3
MATHEMATICA
Table[Ceiling[Sqrt[n]], {n, 0, 100}] (* Mohammad K. Azarian, Jun 15 2016 *)
Table[PadRight[{}, 2n-1, n], {n, 0, 10}]//Flatten (* Harvey P. Dale, May 15 2022 *)
PROG
(PARI) A135034(n)=ceil(sqrt(n)) \\ M. F. Hasler, Nov 12 2017
(Python)
from math import isqrt
def A135034(n): return isqrt(n-1)+1 if n else 0 # Chai Wah Wu, Nov 04 2024
CROSSREFS
Cf. A005408, A003059 (restriction to positive indices), A000194 (round(sqrt(n))), A000196 (floor(sqrt(n))).
Partial sums of A010052.
Sequence in context: A186189 A083375 A088519 * A003059 A325678 A247189
KEYWORD
easy,nonn,changed
AUTHOR
William A. Tedeschi, Feb 10 2008
EXTENSIONS
Edited and corrected by M. F. Hasler, Nov 12 2017
STATUS
approved